| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phplem2OLD.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | phplem2OLD.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | snex | ⊢ { 〈 𝐵 ,  𝐴 〉 }  ∈  V | 
						
							| 4 | 2 1 | f1osn | ⊢ { 〈 𝐵 ,  𝐴 〉 } : { 𝐵 } –1-1-onto→ { 𝐴 } | 
						
							| 5 |  | f1oen3g | ⊢ ( ( { 〈 𝐵 ,  𝐴 〉 }  ∈  V  ∧  { 〈 𝐵 ,  𝐴 〉 } : { 𝐵 } –1-1-onto→ { 𝐴 } )  →  { 𝐵 }  ≈  { 𝐴 } ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ { 𝐵 }  ≈  { 𝐴 } | 
						
							| 7 | 1 | difexi | ⊢ ( 𝐴  ∖  { 𝐵 } )  ∈  V | 
						
							| 8 | 7 | enref | ⊢ ( 𝐴  ∖  { 𝐵 } )  ≈  ( 𝐴  ∖  { 𝐵 } ) | 
						
							| 9 | 6 8 | pm3.2i | ⊢ ( { 𝐵 }  ≈  { 𝐴 }  ∧  ( 𝐴  ∖  { 𝐵 } )  ≈  ( 𝐴  ∖  { 𝐵 } ) ) | 
						
							| 10 |  | incom | ⊢ ( { 𝐴 }  ∩  ( 𝐴  ∖  { 𝐵 } ) )  =  ( ( 𝐴  ∖  { 𝐵 } )  ∩  { 𝐴 } ) | 
						
							| 11 |  | difss | ⊢ ( 𝐴  ∖  { 𝐵 } )  ⊆  𝐴 | 
						
							| 12 |  | ssrin | ⊢ ( ( 𝐴  ∖  { 𝐵 } )  ⊆  𝐴  →  ( ( 𝐴  ∖  { 𝐵 } )  ∩  { 𝐴 } )  ⊆  ( 𝐴  ∩  { 𝐴 } ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ( 𝐴  ∖  { 𝐵 } )  ∩  { 𝐴 } )  ⊆  ( 𝐴  ∩  { 𝐴 } ) | 
						
							| 14 |  | nnord | ⊢ ( 𝐴  ∈  ω  →  Ord  𝐴 ) | 
						
							| 15 |  | orddisj | ⊢ ( Ord  𝐴  →  ( 𝐴  ∩  { 𝐴 } )  =  ∅ ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ∩  { 𝐴 } )  =  ∅ ) | 
						
							| 17 | 13 16 | sseqtrid | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝐴  ∖  { 𝐵 } )  ∩  { 𝐴 } )  ⊆  ∅ ) | 
						
							| 18 |  | ss0 | ⊢ ( ( ( 𝐴  ∖  { 𝐵 } )  ∩  { 𝐴 } )  ⊆  ∅  →  ( ( 𝐴  ∖  { 𝐵 } )  ∩  { 𝐴 } )  =  ∅ ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝐴  ∖  { 𝐵 } )  ∩  { 𝐴 } )  =  ∅ ) | 
						
							| 20 | 10 19 | eqtrid | ⊢ ( 𝐴  ∈  ω  →  ( { 𝐴 }  ∩  ( 𝐴  ∖  { 𝐵 } ) )  =  ∅ ) | 
						
							| 21 |  | disjdif | ⊢ ( { 𝐵 }  ∩  ( 𝐴  ∖  { 𝐵 } ) )  =  ∅ | 
						
							| 22 | 20 21 | jctil | ⊢ ( 𝐴  ∈  ω  →  ( ( { 𝐵 }  ∩  ( 𝐴  ∖  { 𝐵 } ) )  =  ∅  ∧  ( { 𝐴 }  ∩  ( 𝐴  ∖  { 𝐵 } ) )  =  ∅ ) ) | 
						
							| 23 |  | unen | ⊢ ( ( ( { 𝐵 }  ≈  { 𝐴 }  ∧  ( 𝐴  ∖  { 𝐵 } )  ≈  ( 𝐴  ∖  { 𝐵 } ) )  ∧  ( ( { 𝐵 }  ∩  ( 𝐴  ∖  { 𝐵 } ) )  =  ∅  ∧  ( { 𝐴 }  ∩  ( 𝐴  ∖  { 𝐵 } ) )  =  ∅ ) )  →  ( { 𝐵 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  ≈  ( { 𝐴 }  ∪  ( 𝐴  ∖  { 𝐵 } ) ) ) | 
						
							| 24 | 9 22 23 | sylancr | ⊢ ( 𝐴  ∈  ω  →  ( { 𝐵 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  ≈  ( { 𝐴 }  ∪  ( 𝐴  ∖  { 𝐵 } ) ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  ( { 𝐵 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  ≈  ( { 𝐴 }  ∪  ( 𝐴  ∖  { 𝐵 } ) ) ) | 
						
							| 26 |  | uncom | ⊢ ( { 𝐵 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  =  ( ( 𝐴  ∖  { 𝐵 } )  ∪  { 𝐵 } ) | 
						
							| 27 |  | difsnid | ⊢ ( 𝐵  ∈  𝐴  →  ( ( 𝐴  ∖  { 𝐵 } )  ∪  { 𝐵 } )  =  𝐴 ) | 
						
							| 28 | 26 27 | eqtrid | ⊢ ( 𝐵  ∈  𝐴  →  ( { 𝐵 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  =  𝐴 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  ( { 𝐵 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  =  𝐴 ) | 
						
							| 30 |  | phplem1OLD | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  ( { 𝐴 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  =  ( suc  𝐴  ∖  { 𝐵 } ) ) | 
						
							| 31 | 25 29 30 | 3brtr3d | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  𝐴  ≈  ( suc  𝐴  ∖  { 𝐵 } ) ) |