Metamath Proof Explorer


Theorem phplem2OLD

Description: Obsolete lemma for php . (Contributed by NM, 11-Jun-1998) (Revised by Mario Carneiro, 16-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses phplem2OLD.1 AV
phplem2OLD.2 BV
Assertion phplem2OLD AωBAAsucAB

Proof

Step Hyp Ref Expression
1 phplem2OLD.1 AV
2 phplem2OLD.2 BV
3 snex BAV
4 2 1 f1osn BA:B1-1 ontoA
5 f1oen3g BAVBA:B1-1 ontoABA
6 3 4 5 mp2an BA
7 1 difexi ABV
8 7 enref ABAB
9 6 8 pm3.2i BAABAB
10 incom AAB=ABA
11 difss ABA
12 ssrin ABAABAAA
13 11 12 ax-mp ABAAA
14 nnord AωOrdA
15 orddisj OrdAAA=
16 14 15 syl AωAA=
17 13 16 sseqtrid AωABA
18 ss0 ABAABA=
19 17 18 syl AωABA=
20 10 19 eqtrid AωAAB=
21 disjdif BAB=
22 20 21 jctil AωBAB=AAB=
23 unen BAABABBAB=AAB=BABAAB
24 9 22 23 sylancr AωBABAAB
25 24 adantr AωBABABAAB
26 uncom BAB=ABB
27 difsnid BAABB=A
28 26 27 eqtrid BABAB=A
29 28 adantl AωBABAB=A
30 phplem1OLD AωBAAAB=sucAB
31 25 29 30 3brtr3d AωBAAsucAB