Metamath Proof Explorer


Theorem phplem3OLD

Description: Obsolete version of phplem1 as of 23-Sep-2024. (Contributed by NM, 26-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses phplem2OLD.1 A V
phplem2OLD.2 B V
Assertion phplem3OLD A ω B suc A A suc A B

Proof

Step Hyp Ref Expression
1 phplem2OLD.1 A V
2 phplem2OLD.2 B V
3 elsuci B suc A B A B = A
4 1 2 phplem2OLD A ω B A A suc A B
5 1 enref A A
6 nnord A ω Ord A
7 orddif Ord A A = suc A A
8 6 7 syl A ω A = suc A A
9 sneq A = B A = B
10 9 difeq2d A = B suc A A = suc A B
11 10 eqcoms B = A suc A A = suc A B
12 8 11 sylan9eq A ω B = A A = suc A B
13 5 12 breqtrid A ω B = A A suc A B
14 4 13 jaodan A ω B A B = A A suc A B
15 3 14 sylan2 A ω B suc A A suc A B