Metamath Proof Explorer


Theorem phplem3OLD

Description: Obsolete version of phplem1 as of 23-Sep-2024. (Contributed by NM, 26-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses phplem2OLD.1 AV
phplem2OLD.2 BV
Assertion phplem3OLD AωBsucAAsucAB

Proof

Step Hyp Ref Expression
1 phplem2OLD.1 AV
2 phplem2OLD.2 BV
3 elsuci BsucABAB=A
4 1 2 phplem2OLD AωBAAsucAB
5 1 enref AA
6 nnord AωOrdA
7 orddif OrdAA=sucAA
8 6 7 syl AωA=sucAA
9 sneq A=BA=B
10 9 difeq2d A=BsucAA=sucAB
11 10 eqcoms B=AsucAA=sucAB
12 8 11 sylan9eq AωB=AA=sucAB
13 5 12 breqtrid AωB=AAsucAB
14 4 13 jaodan AωBAB=AAsucAB
15 3 14 sylan2 AωBsucAAsucAB