Metamath Proof Explorer


Theorem phplem4OLD

Description: Obsolete version of phplem2 as of 4-Nov-2024. (Contributed by NM, 28-May-1998) (Revised by Mario Carneiro, 24-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses phplem2OLD.1 AV
phplem2OLD.2 BV
Assertion phplem4OLD AωBωsucAsucBAB

Proof

Step Hyp Ref Expression
1 phplem2OLD.1 AV
2 phplem2OLD.2 BV
3 bren sucAsucBff:sucA1-1 ontosucB
4 f1of1 f:sucA1-1 ontosucBf:sucA1-1sucB
5 4 adantl Aωf:sucA1-1 ontosucBf:sucA1-1sucB
6 2 sucex sucBV
7 sssucid AsucA
8 f1imaen2g f:sucA1-1sucBsucBVAsucAAVfAA
9 7 1 8 mpanr12 f:sucA1-1sucBsucBVfAA
10 5 6 9 sylancl Aωf:sucA1-1 ontosucBfAA
11 10 ensymd Aωf:sucA1-1 ontosucBAfA
12 nnord AωOrdA
13 orddif OrdAA=sucAA
14 12 13 syl AωA=sucAA
15 14 imaeq2d AωfA=fsucAA
16 f1ofn f:sucA1-1 ontosucBfFnsucA
17 1 sucid AsucA
18 fnsnfv fFnsucAAsucAfA=fA
19 16 17 18 sylancl f:sucA1-1 ontosucBfA=fA
20 19 difeq2d f:sucA1-1 ontosucBfsucAfA=fsucAfA
21 imadmrn fdomf=ranf
22 21 eqcomi ranf=fdomf
23 f1ofo f:sucA1-1 ontosucBf:sucAontosucB
24 forn f:sucAontosucBranf=sucB
25 23 24 syl f:sucA1-1 ontosucBranf=sucB
26 f1odm f:sucA1-1 ontosucBdomf=sucA
27 26 imaeq2d f:sucA1-1 ontosucBfdomf=fsucA
28 22 25 27 3eqtr3a f:sucA1-1 ontosucBsucB=fsucA
29 28 difeq1d f:sucA1-1 ontosucBsucBfA=fsucAfA
30 dff1o3 f:sucA1-1 ontosucBf:sucAontosucBFunf-1
31 imadif Funf-1fsucAA=fsucAfA
32 30 31 simplbiim f:sucA1-1 ontosucBfsucAA=fsucAfA
33 20 29 32 3eqtr4rd f:sucA1-1 ontosucBfsucAA=sucBfA
34 15 33 sylan9eq Aωf:sucA1-1 ontosucBfA=sucBfA
35 11 34 breqtrd Aωf:sucA1-1 ontosucBAsucBfA
36 fnfvelrn fFnsucAAsucAfAranf
37 16 17 36 sylancl f:sucA1-1 ontosucBfAranf
38 24 eleq2d f:sucAontosucBfAranffAsucB
39 23 38 syl f:sucA1-1 ontosucBfAranffAsucB
40 37 39 mpbid f:sucA1-1 ontosucBfAsucB
41 fvex fAV
42 2 41 phplem3OLD BωfAsucBBsucBfA
43 40 42 sylan2 Bωf:sucA1-1 ontosucBBsucBfA
44 43 ensymd Bωf:sucA1-1 ontosucBsucBfAB
45 entr AsucBfAsucBfABAB
46 35 44 45 syl2an Aωf:sucA1-1 ontosucBBωf:sucA1-1 ontosucBAB
47 46 anandirs AωBωf:sucA1-1 ontosucBAB
48 47 ex AωBωf:sucA1-1 ontosucBAB
49 48 exlimdv AωBωff:sucA1-1 ontosucBAB
50 3 49 biimtrid AωBωsucAsucBAB