| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phplem2OLD.1 |  | 
						
							| 2 |  | phplem2OLD.2 |  | 
						
							| 3 |  | bren |  | 
						
							| 4 |  | f1of1 |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 | 2 | sucex |  | 
						
							| 7 |  | sssucid |  | 
						
							| 8 |  | f1imaen2g |  | 
						
							| 9 | 7 1 8 | mpanr12 |  | 
						
							| 10 | 5 6 9 | sylancl |  | 
						
							| 11 | 10 | ensymd |  | 
						
							| 12 |  | nnord |  | 
						
							| 13 |  | orddif |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 | 14 | imaeq2d |  | 
						
							| 16 |  | f1ofn |  | 
						
							| 17 | 1 | sucid |  | 
						
							| 18 |  | fnsnfv |  | 
						
							| 19 | 16 17 18 | sylancl |  | 
						
							| 20 | 19 | difeq2d |  | 
						
							| 21 |  | imadmrn |  | 
						
							| 22 | 21 | eqcomi |  | 
						
							| 23 |  | f1ofo |  | 
						
							| 24 |  | forn |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 |  | f1odm |  | 
						
							| 27 | 26 | imaeq2d |  | 
						
							| 28 | 22 25 27 | 3eqtr3a |  | 
						
							| 29 | 28 | difeq1d |  | 
						
							| 30 |  | dff1o3 |  | 
						
							| 31 |  | imadif |  | 
						
							| 32 | 30 31 | simplbiim |  | 
						
							| 33 | 20 29 32 | 3eqtr4rd |  | 
						
							| 34 | 15 33 | sylan9eq |  | 
						
							| 35 | 11 34 | breqtrd |  | 
						
							| 36 |  | fnfvelrn |  | 
						
							| 37 | 16 17 36 | sylancl |  | 
						
							| 38 | 24 | eleq2d |  | 
						
							| 39 | 23 38 | syl |  | 
						
							| 40 | 37 39 | mpbid |  | 
						
							| 41 |  | fvex |  | 
						
							| 42 | 2 41 | phplem3OLD |  | 
						
							| 43 | 40 42 | sylan2 |  | 
						
							| 44 | 43 | ensymd |  | 
						
							| 45 |  | entr |  | 
						
							| 46 | 35 44 45 | syl2an |  | 
						
							| 47 | 46 | anandirs |  | 
						
							| 48 | 47 | ex |  | 
						
							| 49 | 48 | exlimdv |  | 
						
							| 50 | 3 49 | biimtrid |  |