| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|
| 2 |
|
eqeq1 |
|
| 3 |
1 2
|
imbi12d |
|
| 4 |
3
|
ralbidv |
|
| 5 |
|
breq1 |
|
| 6 |
|
eqeq1 |
|
| 7 |
5 6
|
imbi12d |
|
| 8 |
7
|
ralbidv |
|
| 9 |
|
breq1 |
|
| 10 |
|
eqeq1 |
|
| 11 |
9 10
|
imbi12d |
|
| 12 |
11
|
ralbidv |
|
| 13 |
|
breq1 |
|
| 14 |
|
eqeq1 |
|
| 15 |
13 14
|
imbi12d |
|
| 16 |
15
|
ralbidv |
|
| 17 |
|
ensym |
|
| 18 |
|
en0 |
|
| 19 |
|
eqcom |
|
| 20 |
18 19
|
bitri |
|
| 21 |
17 20
|
sylib |
|
| 22 |
21
|
rgenw |
|
| 23 |
|
nn0suc |
|
| 24 |
|
en0 |
|
| 25 |
|
breq2 |
|
| 26 |
|
eqeq2 |
|
| 27 |
25 26
|
bibi12d |
|
| 28 |
24 27
|
mpbiri |
|
| 29 |
28
|
biimpd |
|
| 30 |
29
|
a1i |
|
| 31 |
|
nfv |
|
| 32 |
|
nfra1 |
|
| 33 |
31 32
|
nfan |
|
| 34 |
|
nfv |
|
| 35 |
|
vex |
|
| 36 |
|
vex |
|
| 37 |
35 36
|
phplem4OLD |
|
| 38 |
37
|
imim1d |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
a2d |
|
| 41 |
|
rsp |
|
| 42 |
40 41
|
impel |
|
| 43 |
|
suceq |
|
| 44 |
42 43
|
syl8 |
|
| 45 |
|
breq2 |
|
| 46 |
|
eqeq2 |
|
| 47 |
45 46
|
imbi12d |
|
| 48 |
47
|
biimprcd |
|
| 49 |
44 48
|
syl6 |
|
| 50 |
33 34 49
|
rexlimd |
|
| 51 |
30 50
|
jaod |
|
| 52 |
51
|
ex |
|
| 53 |
23 52
|
syl7 |
|
| 54 |
53
|
ralrimdv |
|
| 55 |
|
breq2 |
|
| 56 |
|
eqeq2 |
|
| 57 |
55 56
|
imbi12d |
|
| 58 |
57
|
cbvralvw |
|
| 59 |
54 58
|
imbitrdi |
|
| 60 |
4 8 12 16 22 59
|
finds |
|
| 61 |
|
breq2 |
|
| 62 |
|
eqeq2 |
|
| 63 |
61 62
|
imbi12d |
|
| 64 |
63
|
rspcv |
|
| 65 |
60 64
|
mpan9 |
|
| 66 |
|
eqeng |
|
| 67 |
66
|
adantr |
|
| 68 |
65 67
|
impbid |
|