| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phplem2OLD.1 |  |-  A e. _V | 
						
							| 2 |  | phplem2OLD.2 |  |-  B e. _V | 
						
							| 3 |  | elsuci |  |-  ( B e. suc A -> ( B e. A \/ B = A ) ) | 
						
							| 4 | 1 2 | phplem2OLD |  |-  ( ( A e. _om /\ B e. A ) -> A ~~ ( suc A \ { B } ) ) | 
						
							| 5 | 1 | enref |  |-  A ~~ A | 
						
							| 6 |  | nnord |  |-  ( A e. _om -> Ord A ) | 
						
							| 7 |  | orddif |  |-  ( Ord A -> A = ( suc A \ { A } ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( A e. _om -> A = ( suc A \ { A } ) ) | 
						
							| 9 |  | sneq |  |-  ( A = B -> { A } = { B } ) | 
						
							| 10 | 9 | difeq2d |  |-  ( A = B -> ( suc A \ { A } ) = ( suc A \ { B } ) ) | 
						
							| 11 | 10 | eqcoms |  |-  ( B = A -> ( suc A \ { A } ) = ( suc A \ { B } ) ) | 
						
							| 12 | 8 11 | sylan9eq |  |-  ( ( A e. _om /\ B = A ) -> A = ( suc A \ { B } ) ) | 
						
							| 13 | 5 12 | breqtrid |  |-  ( ( A e. _om /\ B = A ) -> A ~~ ( suc A \ { B } ) ) | 
						
							| 14 | 4 13 | jaodan |  |-  ( ( A e. _om /\ ( B e. A \/ B = A ) ) -> A ~~ ( suc A \ { B } ) ) | 
						
							| 15 | 3 14 | sylan2 |  |-  ( ( A e. _om /\ B e. suc A ) -> A ~~ ( suc A \ { B } ) ) |