| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phplem2OLD.1 |  |-  A e. _V | 
						
							| 2 |  | phplem2OLD.2 |  |-  B e. _V | 
						
							| 3 |  | snex |  |-  { <. B , A >. } e. _V | 
						
							| 4 | 2 1 | f1osn |  |-  { <. B , A >. } : { B } -1-1-onto-> { A } | 
						
							| 5 |  | f1oen3g |  |-  ( ( { <. B , A >. } e. _V /\ { <. B , A >. } : { B } -1-1-onto-> { A } ) -> { B } ~~ { A } ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  { B } ~~ { A } | 
						
							| 7 | 1 | difexi |  |-  ( A \ { B } ) e. _V | 
						
							| 8 | 7 | enref |  |-  ( A \ { B } ) ~~ ( A \ { B } ) | 
						
							| 9 | 6 8 | pm3.2i |  |-  ( { B } ~~ { A } /\ ( A \ { B } ) ~~ ( A \ { B } ) ) | 
						
							| 10 |  | incom |  |-  ( { A } i^i ( A \ { B } ) ) = ( ( A \ { B } ) i^i { A } ) | 
						
							| 11 |  | difss |  |-  ( A \ { B } ) C_ A | 
						
							| 12 |  | ssrin |  |-  ( ( A \ { B } ) C_ A -> ( ( A \ { B } ) i^i { A } ) C_ ( A i^i { A } ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( ( A \ { B } ) i^i { A } ) C_ ( A i^i { A } ) | 
						
							| 14 |  | nnord |  |-  ( A e. _om -> Ord A ) | 
						
							| 15 |  | orddisj |  |-  ( Ord A -> ( A i^i { A } ) = (/) ) | 
						
							| 16 | 14 15 | syl |  |-  ( A e. _om -> ( A i^i { A } ) = (/) ) | 
						
							| 17 | 13 16 | sseqtrid |  |-  ( A e. _om -> ( ( A \ { B } ) i^i { A } ) C_ (/) ) | 
						
							| 18 |  | ss0 |  |-  ( ( ( A \ { B } ) i^i { A } ) C_ (/) -> ( ( A \ { B } ) i^i { A } ) = (/) ) | 
						
							| 19 | 17 18 | syl |  |-  ( A e. _om -> ( ( A \ { B } ) i^i { A } ) = (/) ) | 
						
							| 20 | 10 19 | eqtrid |  |-  ( A e. _om -> ( { A } i^i ( A \ { B } ) ) = (/) ) | 
						
							| 21 |  | disjdif |  |-  ( { B } i^i ( A \ { B } ) ) = (/) | 
						
							| 22 | 20 21 | jctil |  |-  ( A e. _om -> ( ( { B } i^i ( A \ { B } ) ) = (/) /\ ( { A } i^i ( A \ { B } ) ) = (/) ) ) | 
						
							| 23 |  | unen |  |-  ( ( ( { B } ~~ { A } /\ ( A \ { B } ) ~~ ( A \ { B } ) ) /\ ( ( { B } i^i ( A \ { B } ) ) = (/) /\ ( { A } i^i ( A \ { B } ) ) = (/) ) ) -> ( { B } u. ( A \ { B } ) ) ~~ ( { A } u. ( A \ { B } ) ) ) | 
						
							| 24 | 9 22 23 | sylancr |  |-  ( A e. _om -> ( { B } u. ( A \ { B } ) ) ~~ ( { A } u. ( A \ { B } ) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( A e. _om /\ B e. A ) -> ( { B } u. ( A \ { B } ) ) ~~ ( { A } u. ( A \ { B } ) ) ) | 
						
							| 26 |  | uncom |  |-  ( { B } u. ( A \ { B } ) ) = ( ( A \ { B } ) u. { B } ) | 
						
							| 27 |  | difsnid |  |-  ( B e. A -> ( ( A \ { B } ) u. { B } ) = A ) | 
						
							| 28 | 26 27 | eqtrid |  |-  ( B e. A -> ( { B } u. ( A \ { B } ) ) = A ) | 
						
							| 29 | 28 | adantl |  |-  ( ( A e. _om /\ B e. A ) -> ( { B } u. ( A \ { B } ) ) = A ) | 
						
							| 30 |  | phplem1OLD |  |-  ( ( A e. _om /\ B e. A ) -> ( { A } u. ( A \ { B } ) ) = ( suc A \ { B } ) ) | 
						
							| 31 | 25 29 30 | 3brtr3d |  |-  ( ( A e. _om /\ B e. A ) -> A ~~ ( suc A \ { B } ) ) |