| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phplem2OLD.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | phplem2OLD.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | elsuci | ⊢ ( 𝐵  ∈  suc  𝐴  →  ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 ) ) | 
						
							| 4 | 1 2 | phplem2OLD | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  𝐴  ≈  ( suc  𝐴  ∖  { 𝐵 } ) ) | 
						
							| 5 | 1 | enref | ⊢ 𝐴  ≈  𝐴 | 
						
							| 6 |  | nnord | ⊢ ( 𝐴  ∈  ω  →  Ord  𝐴 ) | 
						
							| 7 |  | orddif | ⊢ ( Ord  𝐴  →  𝐴  =  ( suc  𝐴  ∖  { 𝐴 } ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐴  ∈  ω  →  𝐴  =  ( suc  𝐴  ∖  { 𝐴 } ) ) | 
						
							| 9 |  | sneq | ⊢ ( 𝐴  =  𝐵  →  { 𝐴 }  =  { 𝐵 } ) | 
						
							| 10 | 9 | difeq2d | ⊢ ( 𝐴  =  𝐵  →  ( suc  𝐴  ∖  { 𝐴 } )  =  ( suc  𝐴  ∖  { 𝐵 } ) ) | 
						
							| 11 | 10 | eqcoms | ⊢ ( 𝐵  =  𝐴  →  ( suc  𝐴  ∖  { 𝐴 } )  =  ( suc  𝐴  ∖  { 𝐵 } ) ) | 
						
							| 12 | 8 11 | sylan9eq | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  =  𝐴 )  →  𝐴  =  ( suc  𝐴  ∖  { 𝐵 } ) ) | 
						
							| 13 | 5 12 | breqtrid | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  =  𝐴 )  →  𝐴  ≈  ( suc  𝐴  ∖  { 𝐵 } ) ) | 
						
							| 14 | 4 13 | jaodan | ⊢ ( ( 𝐴  ∈  ω  ∧  ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 ) )  →  𝐴  ≈  ( suc  𝐴  ∖  { 𝐵 } ) ) | 
						
							| 15 | 3 14 | sylan2 | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  suc  𝐴 )  →  𝐴  ≈  ( suc  𝐴  ∖  { 𝐵 } ) ) |