| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. _om /\ B e. suc A ) -> A e. _om ) |
| 2 |
|
peano2 |
|- ( A e. _om -> suc A e. _om ) |
| 3 |
|
enrefnn |
|- ( suc A e. _om -> suc A ~~ suc A ) |
| 4 |
2 3
|
syl |
|- ( A e. _om -> suc A ~~ suc A ) |
| 5 |
4
|
adantr |
|- ( ( A e. _om /\ B e. suc A ) -> suc A ~~ suc A ) |
| 6 |
|
simpr |
|- ( ( A e. _om /\ B e. suc A ) -> B e. suc A ) |
| 7 |
|
dif1ennn |
|- ( ( A e. _om /\ suc A ~~ suc A /\ B e. suc A ) -> ( suc A \ { B } ) ~~ A ) |
| 8 |
1 5 6 7
|
syl3anc |
|- ( ( A e. _om /\ B e. suc A ) -> ( suc A \ { B } ) ~~ A ) |
| 9 |
|
nnfi |
|- ( A e. _om -> A e. Fin ) |
| 10 |
|
ensymfib |
|- ( A e. Fin -> ( A ~~ ( suc A \ { B } ) <-> ( suc A \ { B } ) ~~ A ) ) |
| 11 |
1 9 10
|
3syl |
|- ( ( A e. _om /\ B e. suc A ) -> ( A ~~ ( suc A \ { B } ) <-> ( suc A \ { B } ) ~~ A ) ) |
| 12 |
8 11
|
mpbird |
|- ( ( A e. _om /\ B e. suc A ) -> A ~~ ( suc A \ { B } ) ) |