Metamath Proof Explorer


Theorem pjch

Description: Projection of a vector in the projection subspace. Lemma 4.4(ii) of Beran p. 111. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjch ( ( 𝐻C𝐴 ∈ ℋ ) → ( 𝐴𝐻 ↔ ( ( proj𝐻 ) ‘ 𝐴 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( 𝐴𝐻𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ) )
2 fveq2 ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( proj𝐻 ) = ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) )
3 2 fveq1d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( proj𝐻 ) ‘ 𝐴 ) = ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) )
4 3 eqeq1d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) = 𝐴 ↔ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) = 𝐴 ) )
5 1 4 bibi12d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( 𝐴𝐻 ↔ ( ( proj𝐻 ) ‘ 𝐴 ) = 𝐴 ) ↔ ( 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) = 𝐴 ) ) )
6 eleq1 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ) )
7 fveq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) = ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
8 id ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) )
9 7 8 eqeq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) = 𝐴 ↔ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
10 6 9 bibi12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) = 𝐴 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
11 ifchhv if ( 𝐻C , 𝐻 , ℋ ) ∈ C
12 ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ
13 11 12 pjchi ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) )
14 5 10 13 dedth2h ( ( 𝐻C𝐴 ∈ ℋ ) → ( 𝐴𝐻 ↔ ( ( proj𝐻 ) ‘ 𝐴 ) = 𝐴 ) )