| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( ℎ = 𝐻 → ℎ = 𝐻 ) |
| 2 |
|
fveq2 |
⊢ ( ℎ = 𝐻 → ( ⊥ ‘ ℎ ) = ( ⊥ ‘ 𝐻 ) ) |
| 3 |
2
|
rexeqdv |
⊢ ( ℎ = 𝐻 → ( ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ↔ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 4 |
1 3
|
riotaeqbidv |
⊢ ( ℎ = 𝐻 → ( ℩ 𝑧 ∈ ℎ ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) = ( ℩ 𝑧 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 5 |
4
|
mpteq2dv |
⊢ ( ℎ = 𝐻 → ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ ℎ ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ) |
| 6 |
|
df-pjh |
⊢ projℎ = ( ℎ ∈ Cℋ ↦ ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ ℎ ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ) |
| 7 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 8 |
7
|
mptex |
⊢ ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ∈ V |
| 9 |
5 6 8
|
fvmpt |
⊢ ( 𝐻 ∈ Cℋ → ( projℎ ‘ 𝐻 ) = ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ) |