Description: Membership of projection in an intersection. (Contributed by NM, 22-Apr-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjocin.1 | ⊢ 𝐺 ∈ Cℋ | |
| pjocin.2 | ⊢ 𝐻 ∈ Cℋ | ||
| Assertion | pjini | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ( 𝐺 ∩ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjocin.1 | ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjocin.2 | ⊢ 𝐻 ∈ Cℋ | |
| 3 | inss1 | ⊢ ( 𝐺 ∩ 𝐻 ) ⊆ 𝐺 | |
| 4 | 3 | sseli | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → 𝐴 ∈ 𝐺 ) |
| 5 | pjid | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐴 ∈ 𝐺 ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) = 𝐴 ) | |
| 6 | 1 4 5 | sylancr | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) = 𝐴 ) |
| 7 | 6 | eleq1d | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ( 𝐺 ∩ 𝐻 ) ↔ 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) ) ) |
| 8 | 7 | ibir | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ( 𝐺 ∩ 𝐻 ) ) |