Metamath Proof Explorer


Theorem pjjsi

Description: A sufficient condition for subspace join to be equal to subspace sum. (Contributed by NM, 29-May-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjjs.1 𝐺C
pjjs.2 𝐻S
Assertion pjjsi ( ∀ 𝑥 ∈ ( 𝐺 𝐻 ) ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝐺 𝐻 ) = ( 𝐺 + 𝐻 ) )

Proof

Step Hyp Ref Expression
1 pjjs.1 𝐺C
2 pjjs.2 𝐻S
3 fveq2 ( 𝑥 = 𝑤 → ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) )
4 3 eleq1d ( 𝑥 = 𝑤 → ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 ↔ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) )
5 4 rspcv ( 𝑤 ∈ ( 𝐺 𝐻 ) → ( ∀ 𝑥 ∈ ( 𝐺 𝐻 ) ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) )
6 1 chshii 𝐺S
7 6 2 shjcli ( 𝐺 𝐻 ) ∈ C
8 7 cheli ( 𝑤 ∈ ( 𝐺 𝐻 ) → 𝑤 ∈ ℋ )
9 1 pjcli ( 𝑤 ∈ ℋ → ( ( proj𝐺 ) ‘ 𝑤 ) ∈ 𝐺 )
10 9 anim1i ( ( 𝑤 ∈ ℋ ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ( ( ( proj𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) )
11 axpjpj ( ( 𝐺C𝑤 ∈ ℋ ) → 𝑤 = ( ( ( proj𝐺 ) ‘ 𝑤 ) + ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) )
12 1 11 mpan ( 𝑤 ∈ ℋ → 𝑤 = ( ( ( proj𝐺 ) ‘ 𝑤 ) + ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) )
13 12 adantr ( ( 𝑤 ∈ ℋ ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → 𝑤 = ( ( ( proj𝐺 ) ‘ 𝑤 ) + ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) )
14 10 13 jca ( ( 𝑤 ∈ ℋ ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ( ( ( ( proj𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ∧ 𝑤 = ( ( ( proj𝐺 ) ‘ 𝑤 ) + ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) )
15 8 14 sylan ( ( 𝑤 ∈ ( 𝐺 𝐻 ) ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ( ( ( ( proj𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ∧ 𝑤 = ( ( ( proj𝐺 ) ‘ 𝑤 ) + ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) )
16 rspceov ( ( ( ( proj𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻𝑤 = ( ( ( proj𝐺 ) ‘ 𝑤 ) + ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) → ∃ 𝑦𝐺𝑧𝐻 𝑤 = ( 𝑦 + 𝑧 ) )
17 16 3expa ( ( ( ( ( proj𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ∧ 𝑤 = ( ( ( proj𝐺 ) ‘ 𝑤 ) + ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) → ∃ 𝑦𝐺𝑧𝐻 𝑤 = ( 𝑦 + 𝑧 ) )
18 15 17 syl ( ( 𝑤 ∈ ( 𝐺 𝐻 ) ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ∃ 𝑦𝐺𝑧𝐻 𝑤 = ( 𝑦 + 𝑧 ) )
19 6 2 shseli ( 𝑤 ∈ ( 𝐺 + 𝐻 ) ↔ ∃ 𝑦𝐺𝑧𝐻 𝑤 = ( 𝑦 + 𝑧 ) )
20 18 19 sylibr ( ( 𝑤 ∈ ( 𝐺 𝐻 ) ∧ ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → 𝑤 ∈ ( 𝐺 + 𝐻 ) )
21 20 ex ( 𝑤 ∈ ( 𝐺 𝐻 ) → ( ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻𝑤 ∈ ( 𝐺 + 𝐻 ) ) )
22 5 21 syldc ( ∀ 𝑥 ∈ ( 𝐺 𝐻 ) ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝑤 ∈ ( 𝐺 𝐻 ) → 𝑤 ∈ ( 𝐺 + 𝐻 ) ) )
23 22 ssrdv ( ∀ 𝑥 ∈ ( 𝐺 𝐻 ) ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝐺 𝐻 ) ⊆ ( 𝐺 + 𝐻 ) )
24 6 2 shsleji ( 𝐺 + 𝐻 ) ⊆ ( 𝐺 𝐻 )
25 23 24 jctir ( ∀ 𝑥 ∈ ( 𝐺 𝐻 ) ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( ( 𝐺 𝐻 ) ⊆ ( 𝐺 + 𝐻 ) ∧ ( 𝐺 + 𝐻 ) ⊆ ( 𝐺 𝐻 ) ) )
26 eqss ( ( 𝐺 𝐻 ) = ( 𝐺 + 𝐻 ) ↔ ( ( 𝐺 𝐻 ) ⊆ ( 𝐺 + 𝐻 ) ∧ ( 𝐺 + 𝐻 ) ⊆ ( 𝐺 𝐻 ) ) )
27 25 26 sylibr ( ∀ 𝑥 ∈ ( 𝐺 𝐻 ) ( ( proj ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝐺 𝐻 ) = ( 𝐺 + 𝐻 ) )