Metamath Proof Explorer


Theorem pm10.253

Description: Theorem *10.253 in WhiteheadRussell p. 149. (Contributed by Andrew Salmon, 17-Jun-2011)

Ref Expression
Assertion pm10.253 ( ¬ ∀ 𝑥 𝜑 ↔ ∃ 𝑥 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 alex ( ∀ 𝑥 𝜑 ↔ ¬ ∃ 𝑥 ¬ 𝜑 )
2 1 bicomi ( ¬ ∃ 𝑥 ¬ 𝜑 ↔ ∀ 𝑥 𝜑 )
3 2 con1bii ( ¬ ∀ 𝑥 𝜑 ↔ ∃ 𝑥 ¬ 𝜑 )