Metamath Proof Explorer


Theorem pm10.542

Description: Theorem *10.542 in WhiteheadRussell p. 156. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm10.542 ( ∀ 𝑥 ( 𝜑 → ( 𝜒𝜓 ) ) ↔ ( 𝜒 → ∀ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 bi2.04 ( ( 𝜑 → ( 𝜒𝜓 ) ) ↔ ( 𝜒 → ( 𝜑𝜓 ) ) )
2 1 albii ( ∀ 𝑥 ( 𝜑 → ( 𝜒𝜓 ) ) ↔ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) )
3 19.21v ( ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ↔ ( 𝜒 → ∀ 𝑥 ( 𝜑𝜓 ) ) )
4 2 3 bitri ( ∀ 𝑥 ( 𝜑 → ( 𝜒𝜓 ) ) ↔ ( 𝜒 → ∀ 𝑥 ( 𝜑𝜓 ) ) )