Description: Theorem *10.542 in WhiteheadRussell p. 156. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm10.542 | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜒 → 𝜓 ) ) ↔ ( 𝜒 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 | ⊢ ( ( 𝜑 → ( 𝜒 → 𝜓 ) ) ↔ ( 𝜒 → ( 𝜑 → 𝜓 ) ) ) | |
2 | 1 | albii | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜒 → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝜒 → ( 𝜑 → 𝜓 ) ) ) |
3 | 19.21v | ⊢ ( ∀ 𝑥 ( 𝜒 → ( 𝜑 → 𝜓 ) ) ↔ ( 𝜒 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜒 → 𝜓 ) ) ↔ ( 𝜒 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |