Description: Theorem *11.57 in WhiteheadRussell p. 165. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm11.57 | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
2 | 1 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝜑 |
3 | sp | ⊢ ( ∀ 𝑥 𝜑 → 𝜑 ) | |
4 | stdpc4 | ⊢ ( ∀ 𝑥 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) | |
5 | 3 4 | jca | ⊢ ( ∀ 𝑥 𝜑 → ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
6 | 2 5 | alrimi | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
7 | 6 | axc4i | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
8 | simpl | ⊢ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝜑 ) | |
9 | 8 | sps | ⊢ ( ∀ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝜑 ) |
10 | 9 | alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ∀ 𝑥 𝜑 ) |
11 | 7 10 | impbii | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |