Metamath Proof Explorer


Theorem pm11.57

Description: Theorem *11.57 in WhiteheadRussell p. 165. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm11.57 ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑦 𝜑
2 1 nfal 𝑦𝑥 𝜑
3 sp ( ∀ 𝑥 𝜑𝜑 )
4 stdpc4 ( ∀ 𝑥 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 )
5 3 4 jca ( ∀ 𝑥 𝜑 → ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) )
6 2 5 alrimi ( ∀ 𝑥 𝜑 → ∀ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) )
7 6 axc4i ( ∀ 𝑥 𝜑 → ∀ 𝑥𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) )
8 simpl ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝜑 )
9 8 sps ( ∀ 𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝜑 )
10 9 alimi ( ∀ 𝑥𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ∀ 𝑥 𝜑 )
11 7 10 impbii ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥𝑦 ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) )