Description: Theorem *11.62 in WhiteheadRussell p. 166. Importation combined with the rearrangement with quantifiers. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm11.62 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 ( 𝜓 → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) | |
2 | 1 | albii | ⊢ ( ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ∀ 𝑦 ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
3 | 19.21v | ⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( 𝜑 → ∀ 𝑦 ( 𝜓 → 𝜒 ) ) ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ∀ 𝑦 ( 𝜓 → 𝜒 ) ) ) |
5 | 4 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 ( 𝜓 → 𝜒 ) ) ) |