Metamath Proof Explorer


Theorem pm5.36

Description: Theorem *5.36 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.36 ( ( 𝜑 ∧ ( 𝜑𝜓 ) ) ↔ ( 𝜓 ∧ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
2 1 pm5.32ri ( ( 𝜑 ∧ ( 𝜑𝜓 ) ) ↔ ( 𝜓 ∧ ( 𝜑𝜓 ) ) )