| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 2 |  | pmtrdifel.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 3 |  | eqid | ⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) )  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) ) | 
						
							| 4 | 1 2 3 | pmtrdifellem1 | ⊢ ( 𝑡  ∈  𝑇  →  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) )  ∈  𝑅 ) | 
						
							| 5 | 1 2 3 | pmtrdifellem3 | ⊢ ( 𝑡  ∈  𝑇  →  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑡 ‘ 𝑥 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) ) ‘ 𝑥 ) ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑟  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) )  →  ( 𝑟 ‘ 𝑥 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) ) ‘ 𝑥 ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( 𝑟  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) )  →  ( ( 𝑡 ‘ 𝑥 )  =  ( 𝑟 ‘ 𝑥 )  ↔  ( 𝑡 ‘ 𝑥 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) ) ‘ 𝑥 ) ) ) | 
						
							| 8 | 7 | ralbidv | ⊢ ( 𝑟  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) )  →  ( ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑡 ‘ 𝑥 )  =  ( 𝑟 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑡 ‘ 𝑥 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) ) ‘ 𝑥 ) ) ) | 
						
							| 9 | 8 | rspcev | ⊢ ( ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) )  ∈  𝑅  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑡 ‘ 𝑥 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑡  ∖   I  ) ) ‘ 𝑥 ) )  →  ∃ 𝑟  ∈  𝑅 ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑡 ‘ 𝑥 )  =  ( 𝑟 ‘ 𝑥 ) ) | 
						
							| 10 | 4 5 9 | syl2anc | ⊢ ( 𝑡  ∈  𝑇  →  ∃ 𝑟  ∈  𝑅 ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑡 ‘ 𝑥 )  =  ( 𝑟 ‘ 𝑥 ) ) | 
						
							| 11 | 10 | rgen | ⊢ ∀ 𝑡  ∈  𝑇 ∃ 𝑟  ∈  𝑅 ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑡 ‘ 𝑥 )  =  ( 𝑟 ‘ 𝑥 ) |