| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 2 |  | pmtrdifel.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 3 |  | pmtrdifel.0 | ⊢ 𝑆  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑄  ∖   I  ) ) | 
						
							| 4 | 1 2 3 | pmtrdifellem2 | ⊢ ( 𝑄  ∈  𝑇  →  dom  ( 𝑆  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  dom  ( 𝑆  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( 𝑥  ∈  dom  ( 𝑆  ∖   I  )  ↔  𝑥  ∈  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 7 | 4 | difeq1d | ⊢ ( 𝑄  ∈  𝑇  →  ( dom  ( 𝑆  ∖   I  )  ∖  { 𝑥 } )  =  ( dom  ( 𝑄  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 8 | 7 | unieqd | ⊢ ( 𝑄  ∈  𝑇  →  ∪  ( dom  ( 𝑆  ∖   I  )  ∖  { 𝑥 } )  =  ∪  ( dom  ( 𝑄  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ∪  ( dom  ( 𝑆  ∖   I  )  ∖  { 𝑥 } )  =  ∪  ( dom  ( 𝑄  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 10 | 6 9 | ifbieq1d | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  if ( 𝑥  ∈  dom  ( 𝑆  ∖   I  ) ,  ∪  ( dom  ( 𝑆  ∖   I  )  ∖  { 𝑥 } ) ,  𝑥 )  =  if ( 𝑥  ∈  dom  ( 𝑄  ∖   I  ) ,  ∪  ( dom  ( 𝑄  ∖   I  )  ∖  { 𝑥 } ) ,  𝑥 ) ) | 
						
							| 11 | 1 2 3 | pmtrdifellem1 | ⊢ ( 𝑄  ∈  𝑇  →  𝑆  ∈  𝑅 ) | 
						
							| 12 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  →  𝑥  ∈  𝑁 ) | 
						
							| 13 |  | eqid | ⊢ ( pmTrsp ‘ 𝑁 )  =  ( pmTrsp ‘ 𝑁 ) | 
						
							| 14 |  | eqid | ⊢ dom  ( 𝑆  ∖   I  )  =  dom  ( 𝑆  ∖   I  ) | 
						
							| 15 | 13 2 14 | pmtrffv | ⊢ ( ( 𝑆  ∈  𝑅  ∧  𝑥  ∈  𝑁 )  →  ( 𝑆 ‘ 𝑥 )  =  if ( 𝑥  ∈  dom  ( 𝑆  ∖   I  ) ,  ∪  ( dom  ( 𝑆  ∖   I  )  ∖  { 𝑥 } ) ,  𝑥 ) ) | 
						
							| 16 | 11 12 15 | syl2an | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( 𝑆 ‘ 𝑥 )  =  if ( 𝑥  ∈  dom  ( 𝑆  ∖   I  ) ,  ∪  ( dom  ( 𝑆  ∖   I  )  ∖  { 𝑥 } ) ,  𝑥 ) ) | 
						
							| 17 |  | eqid | ⊢ ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) )  =  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 18 |  | eqid | ⊢ dom  ( 𝑄  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) | 
						
							| 19 | 17 1 18 | pmtrffv | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( 𝑄 ‘ 𝑥 )  =  if ( 𝑥  ∈  dom  ( 𝑄  ∖   I  ) ,  ∪  ( dom  ( 𝑄  ∖   I  )  ∖  { 𝑥 } ) ,  𝑥 ) ) | 
						
							| 20 | 10 16 19 | 3eqtr4rd | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( 𝑄 ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) ) | 
						
							| 21 | 20 | ralrimiva | ⊢ ( 𝑄  ∈  𝑇  →  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) ) |