| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 2 |  | pmtrdifel.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 3 |  | pmtrdifel.0 | ⊢ 𝑆  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑄  ∖   I  ) ) | 
						
							| 4 | 1 2 3 | pmtrdifellem1 | ⊢ ( 𝑄  ∈  𝑇  →  𝑆  ∈  𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( pmTrsp ‘ 𝑁 )  =  ( pmTrsp ‘ 𝑁 ) | 
						
							| 6 |  | eqid | ⊢ dom  ( 𝑆  ∖   I  )  =  dom  ( 𝑆  ∖   I  ) | 
						
							| 7 | 5 2 6 | pmtrffv | ⊢ ( ( 𝑆  ∈  𝑅  ∧  𝐾  ∈  𝑁 )  →  ( 𝑆 ‘ 𝐾 )  =  if ( 𝐾  ∈  dom  ( 𝑆  ∖   I  ) ,  ∪  ( dom  ( 𝑆  ∖   I  )  ∖  { 𝐾 } ) ,  𝐾 ) ) | 
						
							| 8 | 4 7 | sylan | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝐾  ∈  𝑁 )  →  ( 𝑆 ‘ 𝐾 )  =  if ( 𝐾  ∈  dom  ( 𝑆  ∖   I  ) ,  ∪  ( dom  ( 𝑆  ∖   I  )  ∖  { 𝐾 } ) ,  𝐾 ) ) | 
						
							| 9 |  | eqid | ⊢ ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) )  =  ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) )  =  ( Base ‘ ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) ) | 
						
							| 11 | 1 9 10 | symgtrf | ⊢ 𝑇  ⊆  ( Base ‘ ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) ) | 
						
							| 12 | 11 | sseli | ⊢ ( 𝑄  ∈  𝑇  →  𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) ) ) | 
						
							| 13 | 9 10 | symgbasf | ⊢ ( 𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) )  →  𝑄 : ( 𝑁  ∖  { 𝐾 } ) ⟶ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 14 |  | ffn | ⊢ ( 𝑄 : ( 𝑁  ∖  { 𝐾 } ) ⟶ ( 𝑁  ∖  { 𝐾 } )  →  𝑄  Fn  ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 15 |  | fndifnfp | ⊢ ( 𝑄  Fn  ( 𝑁  ∖  { 𝐾 } )  →  dom  ( 𝑄  ∖   I  )  =  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 } ) | 
						
							| 16 |  | ssrab2 | ⊢ { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 }  ⊆  ( 𝑁  ∖  { 𝐾 } ) | 
						
							| 17 |  | ssel2 | ⊢ ( ( { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 }  ⊆  ( 𝑁  ∖  { 𝐾 } )  ∧  𝐾  ∈  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 } )  →  𝐾  ∈  ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 18 |  | eldif | ⊢ ( 𝐾  ∈  ( 𝑁  ∖  { 𝐾 } )  ↔  ( 𝐾  ∈  𝑁  ∧  ¬  𝐾  ∈  { 𝐾 } ) ) | 
						
							| 19 |  | elsng | ⊢ ( 𝐾  ∈  𝑁  →  ( 𝐾  ∈  { 𝐾 }  ↔  𝐾  =  𝐾 ) ) | 
						
							| 20 | 19 | notbid | ⊢ ( 𝐾  ∈  𝑁  →  ( ¬  𝐾  ∈  { 𝐾 }  ↔  ¬  𝐾  =  𝐾 ) ) | 
						
							| 21 |  | eqid | ⊢ 𝐾  =  𝐾 | 
						
							| 22 | 21 | pm2.24i | ⊢ ( ¬  𝐾  =  𝐾  →  ¬  𝐾  ∈  𝑁 ) | 
						
							| 23 | 20 22 | biimtrdi | ⊢ ( 𝐾  ∈  𝑁  →  ( ¬  𝐾  ∈  { 𝐾 }  →  ¬  𝐾  ∈  𝑁 ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( 𝐾  ∈  𝑁  ∧  ¬  𝐾  ∈  { 𝐾 } )  →  ¬  𝐾  ∈  𝑁 ) | 
						
							| 25 | 18 24 | sylbi | ⊢ ( 𝐾  ∈  ( 𝑁  ∖  { 𝐾 } )  →  ¬  𝐾  ∈  𝑁 ) | 
						
							| 26 | 17 25 | syl | ⊢ ( ( { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 }  ⊆  ( 𝑁  ∖  { 𝐾 } )  ∧  𝐾  ∈  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 } )  →  ¬  𝐾  ∈  𝑁 ) | 
						
							| 27 | 16 26 | mpan | ⊢ ( 𝐾  ∈  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 }  →  ¬  𝐾  ∈  𝑁 ) | 
						
							| 28 | 27 | con2i | ⊢ ( 𝐾  ∈  𝑁  →  ¬  𝐾  ∈  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 } ) | 
						
							| 29 |  | eleq2 | ⊢ ( dom  ( 𝑄  ∖   I  )  =  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 }  →  ( 𝐾  ∈  dom  ( 𝑄  ∖   I  )  ↔  𝐾  ∈  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 } ) ) | 
						
							| 30 | 29 | notbid | ⊢ ( dom  ( 𝑄  ∖   I  )  =  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 }  →  ( ¬  𝐾  ∈  dom  ( 𝑄  ∖   I  )  ↔  ¬  𝐾  ∈  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 } ) ) | 
						
							| 31 | 28 30 | imbitrrid | ⊢ ( dom  ( 𝑄  ∖   I  )  =  { 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } )  ∣  ( 𝑄 ‘ 𝑥 )  ≠  𝑥 }  →  ( 𝐾  ∈  𝑁  →  ¬  𝐾  ∈  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 32 | 14 15 31 | 3syl | ⊢ ( 𝑄 : ( 𝑁  ∖  { 𝐾 } ) ⟶ ( 𝑁  ∖  { 𝐾 } )  →  ( 𝐾  ∈  𝑁  →  ¬  𝐾  ∈  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 33 | 12 13 32 | 3syl | ⊢ ( 𝑄  ∈  𝑇  →  ( 𝐾  ∈  𝑁  →  ¬  𝐾  ∈  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝐾  ∈  𝑁 )  →  ¬  𝐾  ∈  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 35 | 1 2 3 | pmtrdifellem2 | ⊢ ( 𝑄  ∈  𝑇  →  dom  ( 𝑆  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 36 | 35 | eleq2d | ⊢ ( 𝑄  ∈  𝑇  →  ( 𝐾  ∈  dom  ( 𝑆  ∖   I  )  ↔  𝐾  ∈  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝐾  ∈  𝑁 )  →  ( 𝐾  ∈  dom  ( 𝑆  ∖   I  )  ↔  𝐾  ∈  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 38 | 34 37 | mtbird | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝐾  ∈  𝑁 )  →  ¬  𝐾  ∈  dom  ( 𝑆  ∖   I  ) ) | 
						
							| 39 | 38 | iffalsed | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝐾  ∈  𝑁 )  →  if ( 𝐾  ∈  dom  ( 𝑆  ∖   I  ) ,  ∪  ( dom  ( 𝑆  ∖   I  )  ∖  { 𝐾 } ) ,  𝐾 )  =  𝐾 ) | 
						
							| 40 | 8 39 | eqtrd | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝐾  ∈  𝑁 )  →  ( 𝑆 ‘ 𝐾 )  =  𝐾 ) |