Metamath Proof Explorer


Theorem pmtrdifellem4

Description: Lemma 4 for pmtrdifel . (Contributed by AV, 28-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T=ranpmTrspNK
pmtrdifel.r R=ranpmTrspN
pmtrdifel.0 S=pmTrspNdomQI
Assertion pmtrdifellem4 QTKNSK=K

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T=ranpmTrspNK
2 pmtrdifel.r R=ranpmTrspN
3 pmtrdifel.0 S=pmTrspNdomQI
4 1 2 3 pmtrdifellem1 QTSR
5 eqid pmTrspN=pmTrspN
6 eqid domSI=domSI
7 5 2 6 pmtrffv SRKNSK=ifKdomSIdomSIKK
8 4 7 sylan QTKNSK=ifKdomSIdomSIKK
9 eqid SymGrpNK=SymGrpNK
10 eqid BaseSymGrpNK=BaseSymGrpNK
11 1 9 10 symgtrf TBaseSymGrpNK
12 11 sseli QTQBaseSymGrpNK
13 9 10 symgbasf QBaseSymGrpNKQ:NKNK
14 ffn Q:NKNKQFnNK
15 fndifnfp QFnNKdomQI=xNK|Qxx
16 ssrab2 xNK|QxxNK
17 ssel2 xNK|QxxNKKxNK|QxxKNK
18 eldif KNKKN¬KK
19 elsng KNKKK=K
20 19 notbid KN¬KK¬K=K
21 eqid K=K
22 21 pm2.24i ¬K=K¬KN
23 20 22 syl6bi KN¬KK¬KN
24 23 imp KN¬KK¬KN
25 18 24 sylbi KNK¬KN
26 17 25 syl xNK|QxxNKKxNK|Qxx¬KN
27 16 26 mpan KxNK|Qxx¬KN
28 27 con2i KN¬KxNK|Qxx
29 eleq2 domQI=xNK|QxxKdomQIKxNK|Qxx
30 29 notbid domQI=xNK|Qxx¬KdomQI¬KxNK|Qxx
31 28 30 imbitrrid domQI=xNK|QxxKN¬KdomQI
32 14 15 31 3syl Q:NKNKKN¬KdomQI
33 12 13 32 3syl QTKN¬KdomQI
34 33 imp QTKN¬KdomQI
35 1 2 3 pmtrdifellem2 QTdomSI=domQI
36 35 eleq2d QTKdomSIKdomQI
37 36 adantr QTKNKdomSIKdomQI
38 34 37 mtbird QTKN¬KdomSI
39 38 iffalsed QTKNifKdomSIdomSIKK=K
40 8 39 eqtrd QTKNSK=K