Description: Lemma 2 for pmtrdifel . (Contributed by AV, 15-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmtrdifel.t | |
|
pmtrdifel.r | |
||
pmtrdifel.0 | |
||
Assertion | pmtrdifellem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | |
|
2 | pmtrdifel.r | |
|
3 | pmtrdifel.0 | |
|
4 | 3 | difeq1i | |
5 | 4 | dmeqi | |
6 | eqid | |
|
7 | 6 1 | pmtrfb | |
8 | difsnexi | |
|
9 | f1of | |
|
10 | fdm | |
|
11 | difssd | |
|
12 | dmss | |
|
13 | 11 12 | syl | |
14 | difssd | |
|
15 | sseq1 | |
|
16 | 14 15 | mpbird | |
17 | 13 16 | sstrd | |
18 | 9 10 17 | 3syl | |
19 | id | |
|
20 | 8 18 19 | 3anim123i | |
21 | 7 20 | sylbi | |
22 | eqid | |
|
23 | 22 | pmtrmvd | |
24 | 21 23 | syl | |
25 | 5 24 | eqtrid | |