| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 2 |  | pmtrdifel.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 3 |  | pmtrdifel.0 | ⊢ 𝑆  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑄  ∖   I  ) ) | 
						
							| 4 | 3 | difeq1i | ⊢ ( 𝑆  ∖   I  )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑄  ∖   I  ) )  ∖   I  ) | 
						
							| 5 | 4 | dmeqi | ⊢ dom  ( 𝑆  ∖   I  )  =  dom  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑄  ∖   I  ) )  ∖   I  ) | 
						
							| 6 |  | eqid | ⊢ ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) )  =  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 7 | 6 1 | pmtrfb | ⊢ ( 𝑄  ∈  𝑇  ↔  ( ( 𝑁  ∖  { 𝐾 } )  ∈  V  ∧  𝑄 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } )  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o ) ) | 
						
							| 8 |  | difsnexi | ⊢ ( ( 𝑁  ∖  { 𝐾 } )  ∈  V  →  𝑁  ∈  V ) | 
						
							| 9 |  | f1of | ⊢ ( 𝑄 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } )  →  𝑄 : ( 𝑁  ∖  { 𝐾 } ) ⟶ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 10 |  | fdm | ⊢ ( 𝑄 : ( 𝑁  ∖  { 𝐾 } ) ⟶ ( 𝑁  ∖  { 𝐾 } )  →  dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 11 |  | difssd | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  ( 𝑄  ∖   I  )  ⊆  𝑄 ) | 
						
							| 12 |  | dmss | ⊢ ( ( 𝑄  ∖   I  )  ⊆  𝑄  →  dom  ( 𝑄  ∖   I  )  ⊆  dom  𝑄 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  dom  ( 𝑄  ∖   I  )  ⊆  dom  𝑄 ) | 
						
							| 14 |  | difssd | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  ( 𝑁  ∖  { 𝐾 } )  ⊆  𝑁 ) | 
						
							| 15 |  | sseq1 | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  ( dom  𝑄  ⊆  𝑁  ↔  ( 𝑁  ∖  { 𝐾 } )  ⊆  𝑁 ) ) | 
						
							| 16 | 14 15 | mpbird | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  dom  𝑄  ⊆  𝑁 ) | 
						
							| 17 | 13 16 | sstrd | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  dom  ( 𝑄  ∖   I  )  ⊆  𝑁 ) | 
						
							| 18 | 9 10 17 | 3syl | ⊢ ( 𝑄 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } )  →  dom  ( 𝑄  ∖   I  )  ⊆  𝑁 ) | 
						
							| 19 |  | id | ⊢ ( dom  ( 𝑄  ∖   I  )  ≈  2o  →  dom  ( 𝑄  ∖   I  )  ≈  2o ) | 
						
							| 20 | 8 18 19 | 3anim123i | ⊢ ( ( ( 𝑁  ∖  { 𝐾 } )  ∈  V  ∧  𝑄 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } )  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o )  →  ( 𝑁  ∈  V  ∧  dom  ( 𝑄  ∖   I  )  ⊆  𝑁  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o ) ) | 
						
							| 21 | 7 20 | sylbi | ⊢ ( 𝑄  ∈  𝑇  →  ( 𝑁  ∈  V  ∧  dom  ( 𝑄  ∖   I  )  ⊆  𝑁  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o ) ) | 
						
							| 22 |  | eqid | ⊢ ( pmTrsp ‘ 𝑁 )  =  ( pmTrsp ‘ 𝑁 ) | 
						
							| 23 | 22 | pmtrmvd | ⊢ ( ( 𝑁  ∈  V  ∧  dom  ( 𝑄  ∖   I  )  ⊆  𝑁  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o )  →  dom  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑄  ∖   I  ) )  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 24 | 21 23 | syl | ⊢ ( 𝑄  ∈  𝑇  →  dom  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑄  ∖   I  ) )  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 25 | 5 24 | eqtrid | ⊢ ( 𝑄  ∈  𝑇  →  dom  ( 𝑆  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) |