| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 2 |  | pmtrdifel.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 3 |  | pmtrdifel.0 |  |-  S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) | 
						
							| 4 | 1 2 3 | pmtrdifellem1 |  |-  ( Q e. T -> S e. R ) | 
						
							| 5 |  | eqid |  |-  ( pmTrsp ` N ) = ( pmTrsp ` N ) | 
						
							| 6 |  | eqid |  |-  dom ( S \ _I ) = dom ( S \ _I ) | 
						
							| 7 | 5 2 6 | pmtrffv |  |-  ( ( S e. R /\ K e. N ) -> ( S ` K ) = if ( K e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { K } ) , K ) ) | 
						
							| 8 | 4 7 | sylan |  |-  ( ( Q e. T /\ K e. N ) -> ( S ` K ) = if ( K e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { K } ) , K ) ) | 
						
							| 9 |  | eqid |  |-  ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | 
						
							| 11 | 1 9 10 | symgtrf |  |-  T C_ ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | 
						
							| 12 | 11 | sseli |  |-  ( Q e. T -> Q e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) | 
						
							| 13 | 9 10 | symgbasf |  |-  ( Q e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) -> Q : ( N \ { K } ) --> ( N \ { K } ) ) | 
						
							| 14 |  | ffn |  |-  ( Q : ( N \ { K } ) --> ( N \ { K } ) -> Q Fn ( N \ { K } ) ) | 
						
							| 15 |  | fndifnfp |  |-  ( Q Fn ( N \ { K } ) -> dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) | 
						
							| 16 |  | ssrab2 |  |-  { x e. ( N \ { K } ) | ( Q ` x ) =/= x } C_ ( N \ { K } ) | 
						
							| 17 |  | ssel2 |  |-  ( ( { x e. ( N \ { K } ) | ( Q ` x ) =/= x } C_ ( N \ { K } ) /\ K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) -> K e. ( N \ { K } ) ) | 
						
							| 18 |  | eldif |  |-  ( K e. ( N \ { K } ) <-> ( K e. N /\ -. K e. { K } ) ) | 
						
							| 19 |  | elsng |  |-  ( K e. N -> ( K e. { K } <-> K = K ) ) | 
						
							| 20 | 19 | notbid |  |-  ( K e. N -> ( -. K e. { K } <-> -. K = K ) ) | 
						
							| 21 |  | eqid |  |-  K = K | 
						
							| 22 | 21 | pm2.24i |  |-  ( -. K = K -> -. K e. N ) | 
						
							| 23 | 20 22 | biimtrdi |  |-  ( K e. N -> ( -. K e. { K } -> -. K e. N ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( K e. N /\ -. K e. { K } ) -> -. K e. N ) | 
						
							| 25 | 18 24 | sylbi |  |-  ( K e. ( N \ { K } ) -> -. K e. N ) | 
						
							| 26 | 17 25 | syl |  |-  ( ( { x e. ( N \ { K } ) | ( Q ` x ) =/= x } C_ ( N \ { K } ) /\ K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) -> -. K e. N ) | 
						
							| 27 | 16 26 | mpan |  |-  ( K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> -. K e. N ) | 
						
							| 28 | 27 | con2i |  |-  ( K e. N -> -. K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) | 
						
							| 29 |  | eleq2 |  |-  ( dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> ( K e. dom ( Q \ _I ) <-> K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) ) | 
						
							| 30 | 29 | notbid |  |-  ( dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> ( -. K e. dom ( Q \ _I ) <-> -. K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) ) | 
						
							| 31 | 28 30 | imbitrrid |  |-  ( dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> ( K e. N -> -. K e. dom ( Q \ _I ) ) ) | 
						
							| 32 | 14 15 31 | 3syl |  |-  ( Q : ( N \ { K } ) --> ( N \ { K } ) -> ( K e. N -> -. K e. dom ( Q \ _I ) ) ) | 
						
							| 33 | 12 13 32 | 3syl |  |-  ( Q e. T -> ( K e. N -> -. K e. dom ( Q \ _I ) ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( Q e. T /\ K e. N ) -> -. K e. dom ( Q \ _I ) ) | 
						
							| 35 | 1 2 3 | pmtrdifellem2 |  |-  ( Q e. T -> dom ( S \ _I ) = dom ( Q \ _I ) ) | 
						
							| 36 | 35 | eleq2d |  |-  ( Q e. T -> ( K e. dom ( S \ _I ) <-> K e. dom ( Q \ _I ) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( Q e. T /\ K e. N ) -> ( K e. dom ( S \ _I ) <-> K e. dom ( Q \ _I ) ) ) | 
						
							| 38 | 34 37 | mtbird |  |-  ( ( Q e. T /\ K e. N ) -> -. K e. dom ( S \ _I ) ) | 
						
							| 39 | 38 | iffalsed |  |-  ( ( Q e. T /\ K e. N ) -> if ( K e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { K } ) , K ) = K ) | 
						
							| 40 | 8 39 | eqtrd |  |-  ( ( Q e. T /\ K e. N ) -> ( S ` K ) = K ) |