| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t |  |-  T = ( pmTrsp ` D ) | 
						
							| 2 |  | pmtrrn.r |  |-  R = ran T | 
						
							| 3 |  | pmtrfrn.p |  |-  P = dom ( F \ _I ) | 
						
							| 4 | 1 2 3 | pmtrfrn |  |-  ( F e. R -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) | 
						
							| 5 | 4 | simprd |  |-  ( F e. R -> F = ( T ` P ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( F e. R -> ( F ` Z ) = ( ( T ` P ) ` Z ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( F e. R /\ Z e. D ) -> ( F ` Z ) = ( ( T ` P ) ` Z ) ) | 
						
							| 8 | 4 | simpld |  |-  ( F e. R -> ( D e. _V /\ P C_ D /\ P ~~ 2o ) ) | 
						
							| 9 | 1 | pmtrfv |  |-  ( ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ Z e. D ) -> ( ( T ` P ) ` Z ) = if ( Z e. P , U. ( P \ { Z } ) , Z ) ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( F e. R /\ Z e. D ) -> ( ( T ` P ) ` Z ) = if ( Z e. P , U. ( P \ { Z } ) , Z ) ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( ( F e. R /\ Z e. D ) -> ( F ` Z ) = if ( Z e. P , U. ( P \ { Z } ) , Z ) ) |