| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | pmtrrn.r | ⊢ 𝑅  =  ran  𝑇 | 
						
							| 3 |  | pmtrfrn.p | ⊢ 𝑃  =  dom  ( 𝐹  ∖   I  ) | 
						
							| 4 | 1 2 3 | pmtrfrn | ⊢ ( 𝐹  ∈  𝑅  →  ( ( 𝐷  ∈  V  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  ∧  𝐹  =  ( 𝑇 ‘ 𝑃 ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( 𝐹  ∈  𝑅  →  𝐹  =  ( 𝑇 ‘ 𝑃 ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝐹  ∈  𝑅  →  ( 𝐹 ‘ 𝑍 )  =  ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐹  ∈  𝑅  ∧  𝑍  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑍 )  =  ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) ) | 
						
							| 8 | 4 | simpld | ⊢ ( 𝐹  ∈  𝑅  →  ( 𝐷  ∈  V  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o ) ) | 
						
							| 9 | 1 | pmtrfv | ⊢ ( ( ( 𝐷  ∈  V  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  ∧  𝑍  ∈  𝐷 )  →  ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑃 ,  ∪  ( 𝑃  ∖  { 𝑍 } ) ,  𝑍 ) ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( 𝐹  ∈  𝑅  ∧  𝑍  ∈  𝐷 )  →  ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑃 ,  ∪  ( 𝑃  ∖  { 𝑍 } ) ,  𝑍 ) ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( ( 𝐹  ∈  𝑅  ∧  𝑍  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑃 ,  ∪  ( 𝑃  ∖  { 𝑍 } ) ,  𝑍 ) ) |