| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | pmtrrn.r | ⊢ 𝑅  =  ran  𝑇 | 
						
							| 3 |  | eqid | ⊢ dom  ( 𝐹  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) | 
						
							| 4 | 1 2 3 | pmtrfrn | ⊢ ( 𝐹  ∈  𝑅  →  ( ( 𝐷  ∈  V  ∧  dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ∧  dom  ( 𝐹  ∖   I  )  ≈  2o )  ∧  𝐹  =  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) ) ) | 
						
							| 5 | 4 | simpld | ⊢ ( 𝐹  ∈  𝑅  →  ( 𝐷  ∈  V  ∧  dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ∧  dom  ( 𝐹  ∖   I  )  ≈  2o ) ) | 
						
							| 6 | 5 | simp3d | ⊢ ( 𝐹  ∈  𝑅  →  dom  ( 𝐹  ∖   I  )  ≈  2o ) | 
						
							| 7 |  | en2 | ⊢ ( dom  ( 𝐹  ∖   I  )  ≈  2o  →  ∃ 𝑥 ∃ 𝑦 dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 } ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐹  ∈  𝑅  →  ∃ 𝑥 ∃ 𝑦 dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 } ) | 
						
							| 9 | 5 | simp2d | ⊢ ( 𝐹  ∈  𝑅  →  dom  ( 𝐹  ∖   I  )  ⊆  𝐷 ) | 
						
							| 10 | 4 | simprd | ⊢ ( 𝐹  ∈  𝑅  →  𝐹  =  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) ) | 
						
							| 11 | 9 6 10 | jca32 | ⊢ ( 𝐹  ∈  𝑅  →  ( dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  𝐹  =  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) ) ) ) | 
						
							| 12 |  | sseq1 | ⊢ ( dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 }  →  ( dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ↔  { 𝑥 ,  𝑦 }  ⊆  𝐷 ) ) | 
						
							| 13 |  | breq1 | ⊢ ( dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 }  →  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ↔  { 𝑥 ,  𝑦 }  ≈  2o ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 }  →  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) )  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 }  →  ( 𝐹  =  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) )  ↔  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 16 | 13 15 | anbi12d | ⊢ ( dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 }  →  ( ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  𝐹  =  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) )  ↔  ( { 𝑥 ,  𝑦 }  ≈  2o  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 17 | 12 16 | anbi12d | ⊢ ( dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 }  →  ( ( dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  𝐹  =  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) ) )  ↔  ( { 𝑥 ,  𝑦 }  ⊆  𝐷  ∧  ( { 𝑥 ,  𝑦 }  ≈  2o  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) ) ) | 
						
							| 18 | 11 17 | syl5ibcom | ⊢ ( 𝐹  ∈  𝑅  →  ( dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 }  →  ( { 𝑥 ,  𝑦 }  ⊆  𝐷  ∧  ( { 𝑥 ,  𝑦 }  ≈  2o  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) ) ) | 
						
							| 19 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 20 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 21 | 19 20 | prss | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ↔  { 𝑥 ,  𝑦 }  ⊆  𝐷 ) | 
						
							| 22 | 21 | bicomi | ⊢ ( { 𝑥 ,  𝑦 }  ⊆  𝐷  ↔  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) ) | 
						
							| 23 |  | pr2ne | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( { 𝑥 ,  𝑦 }  ≈  2o  ↔  𝑥  ≠  𝑦 ) ) | 
						
							| 24 | 23 | el2v | ⊢ ( { 𝑥 ,  𝑦 }  ≈  2o  ↔  𝑥  ≠  𝑦 ) | 
						
							| 25 | 24 | anbi1i | ⊢ ( ( { 𝑥 ,  𝑦 }  ≈  2o  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) )  ↔  ( 𝑥  ≠  𝑦  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 26 | 22 25 | anbi12i | ⊢ ( ( { 𝑥 ,  𝑦 }  ⊆  𝐷  ∧  ( { 𝑥 ,  𝑦 }  ≈  2o  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) )  ↔  ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 27 | 18 26 | imbitrdi | ⊢ ( 𝐹  ∈  𝑅  →  ( dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 }  →  ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) ) ) | 
						
							| 28 | 27 | 2eximdv | ⊢ ( 𝐹  ∈  𝑅  →  ( ∃ 𝑥 ∃ 𝑦 dom  ( 𝐹  ∖   I  )  =  { 𝑥 ,  𝑦 }  →  ∃ 𝑥 ∃ 𝑦 ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) ) ) | 
						
							| 29 | 8 28 | mpd | ⊢ ( 𝐹  ∈  𝑅  →  ∃ 𝑥 ∃ 𝑦 ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 30 |  | r2ex | ⊢ ( ∃ 𝑥  ∈  𝐷 ∃ 𝑦  ∈  𝐷 ( 𝑥  ≠  𝑦  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) )  ↔  ∃ 𝑥 ∃ 𝑦 ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 31 | 29 30 | sylibr | ⊢ ( 𝐹  ∈  𝑅  →  ∃ 𝑥  ∈  𝐷 ∃ 𝑦  ∈  𝐷 ( 𝑥  ≠  𝑦  ∧  𝐹  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) |