| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrrn.t |
|
| 2 |
|
pmtrrn.r |
|
| 3 |
|
eqid |
|
| 4 |
1 2 3
|
pmtrfrn |
|
| 5 |
4
|
simpld |
|
| 6 |
5
|
simp3d |
|
| 7 |
|
en2 |
|
| 8 |
6 7
|
syl |
|
| 9 |
5
|
simp2d |
|
| 10 |
4
|
simprd |
|
| 11 |
9 6 10
|
jca32 |
|
| 12 |
|
sseq1 |
|
| 13 |
|
breq1 |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
13 15
|
anbi12d |
|
| 17 |
12 16
|
anbi12d |
|
| 18 |
11 17
|
syl5ibcom |
|
| 19 |
|
vex |
|
| 20 |
|
vex |
|
| 21 |
19 20
|
prss |
|
| 22 |
21
|
bicomi |
|
| 23 |
|
pr2ne |
|
| 24 |
23
|
el2v |
|
| 25 |
24
|
anbi1i |
|
| 26 |
22 25
|
anbi12i |
|
| 27 |
18 26
|
imbitrdi |
|
| 28 |
27
|
2eximdv |
|
| 29 |
8 28
|
mpd |
|
| 30 |
|
r2ex |
|
| 31 |
29 30
|
sylibr |
|