Metamath Proof Explorer


Theorem pmtrrn2

Description: For any transposition there are two points it is transposing. (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses pmtrrn.t T=pmTrspD
pmtrrn.r R=ranT
Assertion pmtrrn2 FRxDyDxyF=Txy

Proof

Step Hyp Ref Expression
1 pmtrrn.t T=pmTrspD
2 pmtrrn.r R=ranT
3 eqid domFI=domFI
4 1 2 3 pmtrfrn FRDVdomFIDdomFI2𝑜F=TdomFI
5 4 simpld FRDVdomFIDdomFI2𝑜
6 5 simp3d FRdomFI2𝑜
7 en2 domFI2𝑜xydomFI=xy
8 6 7 syl FRxydomFI=xy
9 5 simp2d FRdomFID
10 4 simprd FRF=TdomFI
11 9 6 10 jca32 FRdomFIDdomFI2𝑜F=TdomFI
12 sseq1 domFI=xydomFIDxyD
13 breq1 domFI=xydomFI2𝑜xy2𝑜
14 fveq2 domFI=xyTdomFI=Txy
15 14 eqeq2d domFI=xyF=TdomFIF=Txy
16 13 15 anbi12d domFI=xydomFI2𝑜F=TdomFIxy2𝑜F=Txy
17 12 16 anbi12d domFI=xydomFIDdomFI2𝑜F=TdomFIxyDxy2𝑜F=Txy
18 11 17 syl5ibcom FRdomFI=xyxyDxy2𝑜F=Txy
19 vex xV
20 vex yV
21 19 20 prss xDyDxyD
22 21 bicomi xyDxDyD
23 pr2ne xVyVxy2𝑜xy
24 23 el2v xy2𝑜xy
25 24 anbi1i xy2𝑜F=TxyxyF=Txy
26 22 25 anbi12i xyDxy2𝑜F=TxyxDyDxyF=Txy
27 18 26 imbitrdi FRdomFI=xyxDyDxyF=Txy
28 27 2eximdv FRxydomFI=xyxyxDyDxyF=Txy
29 8 28 mpd FRxyxDyDxyF=Txy
30 r2ex xDyDxyF=TxyxyxDyDxyF=Txy
31 29 30 sylibr FRxDyDxyF=Txy