Metamath Proof Explorer


Theorem pmtrdifellem1

Description: Lemma 1 for pmtrdifel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t
|- T = ran ( pmTrsp ` ( N \ { K } ) )
pmtrdifel.r
|- R = ran ( pmTrsp ` N )
pmtrdifel.0
|- S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) )
Assertion pmtrdifellem1
|- ( Q e. T -> S e. R )

Proof

Step Hyp Ref Expression
1 pmtrdifel.t
 |-  T = ran ( pmTrsp ` ( N \ { K } ) )
2 pmtrdifel.r
 |-  R = ran ( pmTrsp ` N )
3 pmtrdifel.0
 |-  S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) )
4 eqid
 |-  ( pmTrsp ` ( N \ { K } ) ) = ( pmTrsp ` ( N \ { K } ) )
5 4 1 pmtrfb
 |-  ( Q e. T <-> ( ( N \ { K } ) e. _V /\ Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) /\ dom ( Q \ _I ) ~~ 2o ) )
6 difsnexi
 |-  ( ( N \ { K } ) e. _V -> N e. _V )
7 f1of
 |-  ( Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) -> Q : ( N \ { K } ) --> ( N \ { K } ) )
8 fdm
 |-  ( Q : ( N \ { K } ) --> ( N \ { K } ) -> dom Q = ( N \ { K } ) )
9 difssd
 |-  ( dom Q = ( N \ { K } ) -> ( Q \ _I ) C_ Q )
10 dmss
 |-  ( ( Q \ _I ) C_ Q -> dom ( Q \ _I ) C_ dom Q )
11 9 10 syl
 |-  ( dom Q = ( N \ { K } ) -> dom ( Q \ _I ) C_ dom Q )
12 difssd
 |-  ( dom Q = ( N \ { K } ) -> ( N \ { K } ) C_ N )
13 sseq1
 |-  ( dom Q = ( N \ { K } ) -> ( dom Q C_ N <-> ( N \ { K } ) C_ N ) )
14 12 13 mpbird
 |-  ( dom Q = ( N \ { K } ) -> dom Q C_ N )
15 11 14 sstrd
 |-  ( dom Q = ( N \ { K } ) -> dom ( Q \ _I ) C_ N )
16 7 8 15 3syl
 |-  ( Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) -> dom ( Q \ _I ) C_ N )
17 id
 |-  ( dom ( Q \ _I ) ~~ 2o -> dom ( Q \ _I ) ~~ 2o )
18 eqid
 |-  ( pmTrsp ` N ) = ( pmTrsp ` N )
19 18 2 pmtrrn
 |-  ( ( N e. _V /\ dom ( Q \ _I ) C_ N /\ dom ( Q \ _I ) ~~ 2o ) -> ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) e. R )
20 3 19 eqeltrid
 |-  ( ( N e. _V /\ dom ( Q \ _I ) C_ N /\ dom ( Q \ _I ) ~~ 2o ) -> S e. R )
21 6 16 17 20 syl3an
 |-  ( ( ( N \ { K } ) e. _V /\ Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) /\ dom ( Q \ _I ) ~~ 2o ) -> S e. R )
22 5 21 sylbi
 |-  ( Q e. T -> S e. R )