| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 2 |  | pmtrdifel.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 3 |  | pmtrdifel.0 |  |-  S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) | 
						
							| 4 | 1 2 3 | pmtrdifellem2 |  |-  ( Q e. T -> dom ( S \ _I ) = dom ( Q \ _I ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( Q e. T /\ x e. ( N \ { K } ) ) -> dom ( S \ _I ) = dom ( Q \ _I ) ) | 
						
							| 6 | 5 | eleq2d |  |-  ( ( Q e. T /\ x e. ( N \ { K } ) ) -> ( x e. dom ( S \ _I ) <-> x e. dom ( Q \ _I ) ) ) | 
						
							| 7 | 4 | difeq1d |  |-  ( Q e. T -> ( dom ( S \ _I ) \ { x } ) = ( dom ( Q \ _I ) \ { x } ) ) | 
						
							| 8 | 7 | unieqd |  |-  ( Q e. T -> U. ( dom ( S \ _I ) \ { x } ) = U. ( dom ( Q \ _I ) \ { x } ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( Q e. T /\ x e. ( N \ { K } ) ) -> U. ( dom ( S \ _I ) \ { x } ) = U. ( dom ( Q \ _I ) \ { x } ) ) | 
						
							| 10 | 6 9 | ifbieq1d |  |-  ( ( Q e. T /\ x e. ( N \ { K } ) ) -> if ( x e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { x } ) , x ) = if ( x e. dom ( Q \ _I ) , U. ( dom ( Q \ _I ) \ { x } ) , x ) ) | 
						
							| 11 | 1 2 3 | pmtrdifellem1 |  |-  ( Q e. T -> S e. R ) | 
						
							| 12 |  | eldifi |  |-  ( x e. ( N \ { K } ) -> x e. N ) | 
						
							| 13 |  | eqid |  |-  ( pmTrsp ` N ) = ( pmTrsp ` N ) | 
						
							| 14 |  | eqid |  |-  dom ( S \ _I ) = dom ( S \ _I ) | 
						
							| 15 | 13 2 14 | pmtrffv |  |-  ( ( S e. R /\ x e. N ) -> ( S ` x ) = if ( x e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { x } ) , x ) ) | 
						
							| 16 | 11 12 15 | syl2an |  |-  ( ( Q e. T /\ x e. ( N \ { K } ) ) -> ( S ` x ) = if ( x e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { x } ) , x ) ) | 
						
							| 17 |  | eqid |  |-  ( pmTrsp ` ( N \ { K } ) ) = ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 18 |  | eqid |  |-  dom ( Q \ _I ) = dom ( Q \ _I ) | 
						
							| 19 | 17 1 18 | pmtrffv |  |-  ( ( Q e. T /\ x e. ( N \ { K } ) ) -> ( Q ` x ) = if ( x e. dom ( Q \ _I ) , U. ( dom ( Q \ _I ) \ { x } ) , x ) ) | 
						
							| 20 | 10 16 19 | 3eqtr4rd |  |-  ( ( Q e. T /\ x e. ( N \ { K } ) ) -> ( Q ` x ) = ( S ` x ) ) | 
						
							| 21 | 20 | ralrimiva |  |-  ( Q e. T -> A. x e. ( N \ { K } ) ( Q ` x ) = ( S ` x ) ) |