Metamath Proof Explorer


Theorem pr2cv2

Description: If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023)

Ref Expression
Assertion pr2cv2 ( { 𝐴 , 𝐵 } ≈ 2o𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 pr2cv ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
2 1 simprd ( { 𝐴 , 𝐵 } ≈ 2o𝐵 ∈ V )