Description: An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pren2 | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pr2ne | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝐴 , 𝐵 } ≈ 2o ↔ 𝐴 ≠ 𝐵 ) ) | |
| 2 | 1 | pm5.32i | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ { 𝐴 , 𝐵 } ≈ 2o ) ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 ≠ 𝐵 ) ) |
| 3 | pr2cv | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 4 | 3 | pm4.71ri | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ { 𝐴 , 𝐵 } ≈ 2o ) ) |
| 5 | df-3an | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 ≠ 𝐵 ) ) | |
| 6 | 2 4 5 | 3bitr4i | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) |