Metamath Proof Explorer


Theorem pren2

Description: An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion pren2 ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 pr2ne ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝐴 , 𝐵 } ≈ 2o𝐴𝐵 ) )
2 1 pm5.32i ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ { 𝐴 , 𝐵 } ≈ 2o ) ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴𝐵 ) )
3 pr2cv ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
4 3 pm4.71ri ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ { 𝐴 , 𝐵 } ≈ 2o ) )
5 df-3an ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴𝐵 ) )
6 2 4 5 3bitr4i ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) )