Metamath Proof Explorer


Theorem pren2

Description: An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion pren2 AB2𝑜AVBVAB

Proof

Step Hyp Ref Expression
1 pr2ne AVBVAB2𝑜AB
2 1 pm5.32i AVBVAB2𝑜AVBVAB
3 pr2cv AB2𝑜AVBV
4 3 pm4.71ri AB2𝑜AVBVAB2𝑜
5 df-3an AVBVABAVBVAB
6 2 4 5 3bitr4i AB2𝑜AVBVAB