Metamath Proof Explorer


Theorem pr2eldif1

Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)

Ref Expression
Assertion pr2eldif1 A B 2 𝑜 A A B B

Proof

Step Hyp Ref Expression
1 pren2 A B 2 𝑜 A V B V A B
2 prid1g A V A A B
3 2 3ad2ant1 A V B V A B A A B
4 nelsn A B ¬ A B
5 4 3ad2ant3 A V B V A B ¬ A B
6 3 5 eldifd A V B V A B A A B B
7 1 6 sylbi A B 2 𝑜 A A B B