Metamath Proof Explorer


Theorem pr2eldif1

Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)

Ref Expression
Assertion pr2eldif1 ( { 𝐴 , 𝐵 } ≈ 2o𝐴 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 pren2 ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) )
2 prid1g ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 , 𝐵 } )
3 2 3ad2ant1 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐵 } )
4 nelsn ( 𝐴𝐵 → ¬ 𝐴 ∈ { 𝐵 } )
5 4 3ad2ant3 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) → ¬ 𝐴 ∈ { 𝐵 } )
6 3 5 eldifd ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) → 𝐴 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) )
7 1 6 sylbi ( { 𝐴 , 𝐵 } ≈ 2o𝐴 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) )