Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | pr2eldif1 | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o → 𝐴 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pren2 | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) | |
2 | prid1g | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 , 𝐵 } ) | |
3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
4 | nelsn | ⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ { 𝐵 } ) | |
5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → ¬ 𝐴 ∈ { 𝐵 } ) |
6 | 3 5 | eldifd | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) ) |
7 | 1 6 | sylbi | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o → 𝐴 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) ) |