Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | pr2eldif2 | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o → 𝐵 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pren2 | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) | |
2 | prid2g | ⊢ ( 𝐵 ∈ V → 𝐵 ∈ { 𝐴 , 𝐵 } ) | |
3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
4 | necom | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) | |
5 | nelsn | ⊢ ( 𝐵 ≠ 𝐴 → ¬ 𝐵 ∈ { 𝐴 } ) | |
6 | 4 5 | sylbi | ⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ { 𝐴 } ) |
7 | 6 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → ¬ 𝐵 ∈ { 𝐴 } ) |
8 | 3 7 | eldifd | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) ) |
9 | 1 8 | sylbi | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o → 𝐵 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) ) |