Metamath Proof Explorer


Theorem pr2eldif2

Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)

Ref Expression
Assertion pr2eldif2 ( { 𝐴 , 𝐵 } ≈ 2o𝐵 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 pren2 ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) )
2 prid2g ( 𝐵 ∈ V → 𝐵 ∈ { 𝐴 , 𝐵 } )
3 2 3ad2ant2 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 } )
4 necom ( 𝐴𝐵𝐵𝐴 )
5 nelsn ( 𝐵𝐴 → ¬ 𝐵 ∈ { 𝐴 } )
6 4 5 sylbi ( 𝐴𝐵 → ¬ 𝐵 ∈ { 𝐴 } )
7 6 3ad2ant3 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) → ¬ 𝐵 ∈ { 𝐴 } )
8 3 7 eldifd ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) → 𝐵 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) )
9 1 8 sylbi ( { 𝐴 , 𝐵 } ≈ 2o𝐵 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) )