Metamath Proof Explorer


Theorem pren2d

Description: A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023)

Ref Expression
Hypotheses sur0020.a ( 𝜑𝐴𝑉 )
sur0020.b ( 𝜑𝐵𝑊 )
sur0020.aneb ( 𝜑𝐴𝐵 )
Assertion pren2d ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o )

Proof

Step Hyp Ref Expression
1 sur0020.a ( 𝜑𝐴𝑉 )
2 sur0020.b ( 𝜑𝐵𝑊 )
3 sur0020.aneb ( 𝜑𝐴𝐵 )
4 1 elexd ( 𝜑𝐴 ∈ V )
5 2 elexd ( 𝜑𝐵 ∈ V )
6 pren2 ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) )
7 4 5 3 6 syl3anbrc ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o )