Description: A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pren2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| pren2d.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| pren2d.aneb | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| Assertion | pren2d | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pren2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | pren2d.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | pren2d.aneb | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 4 | 1 | elexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 5 | 2 | elexd | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 6 | pren2 | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) | |
| 7 | 4 5 3 6 | syl3anbrc | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o ) |