Description: A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sur0020.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
sur0020.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
sur0020.aneb | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
Assertion | pren2d | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sur0020.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
2 | sur0020.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
3 | sur0020.aneb | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
4 | 1 | elexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
5 | 2 | elexd | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
6 | pren2 | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) | |
7 | 4 5 3 6 | syl3anbrc | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o ) |