Description: A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pren2d.a | |- ( ph -> A e. V ) |
|
pren2d.b | |- ( ph -> B e. W ) |
||
pren2d.aneb | |- ( ph -> A =/= B ) |
||
Assertion | pren2d | |- ( ph -> { A , B } ~~ 2o ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pren2d.a | |- ( ph -> A e. V ) |
|
2 | pren2d.b | |- ( ph -> B e. W ) |
|
3 | pren2d.aneb | |- ( ph -> A =/= B ) |
|
4 | 1 | elexd | |- ( ph -> A e. _V ) |
5 | 2 | elexd | |- ( ph -> B e. _V ) |
6 | pren2 | |- ( { A , B } ~~ 2o <-> ( A e. _V /\ B e. _V /\ A =/= B ) ) |
|
7 | 4 5 3 6 | syl3anbrc | |- ( ph -> { A , B } ~~ 2o ) |