Metamath Proof Explorer


Theorem pren2d

Description: A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023)

Ref Expression
Hypotheses sur0020.a
|- ( ph -> A e. V )
sur0020.b
|- ( ph -> B e. W )
sur0020.aneb
|- ( ph -> A =/= B )
Assertion pren2d
|- ( ph -> { A , B } ~~ 2o )

Proof

Step Hyp Ref Expression
1 sur0020.a
 |-  ( ph -> A e. V )
2 sur0020.b
 |-  ( ph -> B e. W )
3 sur0020.aneb
 |-  ( ph -> A =/= B )
4 1 elexd
 |-  ( ph -> A e. _V )
5 2 elexd
 |-  ( ph -> B e. _V )
6 pren2
 |-  ( { A , B } ~~ 2o <-> ( A e. _V /\ B e. _V /\ A =/= B ) )
7 4 5 3 6 syl3anbrc
 |-  ( ph -> { A , B } ~~ 2o )