Step |
Hyp |
Ref |
Expression |
1 |
|
df-1o |
|- 1o = suc (/) |
2 |
1
|
fveq2i |
|- ( aleph ` 1o ) = ( aleph ` suc (/) ) |
3 |
|
0elon |
|- (/) e. On |
4 |
|
alephsuc |
|- ( (/) e. On -> ( aleph ` suc (/) ) = ( har ` ( aleph ` (/) ) ) ) |
5 |
3 4
|
ax-mp |
|- ( aleph ` suc (/) ) = ( har ` ( aleph ` (/) ) ) |
6 |
|
aleph0 |
|- ( aleph ` (/) ) = _om |
7 |
6
|
fveq2i |
|- ( har ` ( aleph ` (/) ) ) = ( har ` _om ) |
8 |
5 7
|
eqtri |
|- ( aleph ` suc (/) ) = ( har ` _om ) |
9 |
|
omelon |
|- _om e. On |
10 |
|
onenon |
|- ( _om e. On -> _om e. dom card ) |
11 |
9 10
|
ax-mp |
|- _om e. dom card |
12 |
|
harval2 |
|- ( _om e. dom card -> ( har ` _om ) = |^| { x e. On | _om ~< x } ) |
13 |
11 12
|
ax-mp |
|- ( har ` _om ) = |^| { x e. On | _om ~< x } |
14 |
8 13
|
eqtri |
|- ( aleph ` suc (/) ) = |^| { x e. On | _om ~< x } |
15 |
2 14
|
eqtri |
|- ( aleph ` 1o ) = |^| { x e. On | _om ~< x } |