Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
General Observations
aleph1min
Next ⟩
alephiso2
Metamath Proof Explorer
Ascii
Unicode
Theorem
aleph1min
Description:
( aleph
1o )
is the least uncountable ordinal.
(Contributed by
RP
, 18-Nov-2023)
Ref
Expression
Assertion
aleph1min
⊢
ℵ
⁡
1
𝑜
=
⋂
x
∈
On
|
ω
≺
x
Proof
Step
Hyp
Ref
Expression
1
df-1o
⊢
1
𝑜
=
suc
⁡
∅
2
1
fveq2i
⊢
ℵ
⁡
1
𝑜
=
ℵ
⁡
suc
⁡
∅
3
0elon
⊢
∅
∈
On
4
alephsuc
⊢
∅
∈
On
→
ℵ
⁡
suc
⁡
∅
=
har
⁡
ℵ
⁡
∅
5
3
4
ax-mp
⊢
ℵ
⁡
suc
⁡
∅
=
har
⁡
ℵ
⁡
∅
6
aleph0
⊢
ℵ
⁡
∅
=
ω
7
6
fveq2i
⊢
har
⁡
ℵ
⁡
∅
=
har
⁡
ω
8
5
7
eqtri
⊢
ℵ
⁡
suc
⁡
∅
=
har
⁡
ω
9
omelon
⊢
ω
∈
On
10
onenon
⊢
ω
∈
On
→
ω
∈
dom
⁡
card
11
9
10
ax-mp
⊢
ω
∈
dom
⁡
card
12
harval2
⊢
ω
∈
dom
⁡
card
→
har
⁡
ω
=
⋂
x
∈
On
|
ω
≺
x
13
11
12
ax-mp
⊢
har
⁡
ω
=
⋂
x
∈
On
|
ω
≺
x
14
8
13
eqtri
⊢
ℵ
⁡
suc
⁡
∅
=
⋂
x
∈
On
|
ω
≺
x
15
2
14
eqtri
⊢
ℵ
⁡
1
𝑜
=
⋂
x
∈
On
|
ω
≺
x