Metamath Proof Explorer


Theorem aleph1min

Description: ( aleph1o ) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023)

Ref Expression
Assertion aleph1min 1 𝑜 = x On | ω x

Proof

Step Hyp Ref Expression
1 df-1o 1 𝑜 = suc
2 1 fveq2i 1 𝑜 = suc
3 0elon On
4 alephsuc On suc = har
5 3 4 ax-mp suc = har
6 aleph0 = ω
7 6 fveq2i har = har ω
8 5 7 eqtri suc = har ω
9 omelon ω On
10 onenon ω On ω dom card
11 9 10 ax-mp ω dom card
12 harval2 ω dom card har ω = x On | ω x
13 11 12 ax-mp har ω = x On | ω x
14 8 13 eqtri suc = x On | ω x
15 2 14 eqtri 1 𝑜 = x On | ω x