Metamath Proof Explorer


Theorem alephiso2

Description: aleph is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023)

Ref Expression
Assertion alephiso2 Isom E , On x ran card | ω x

Proof

Step Hyp Ref Expression
1 alephiso Isom E , E On x | ω x card x = x
2 iscard4 card x = x x ran card
3 2 anbi1ci ω x card x = x x ran card ω x
4 3 abbii x | ω x card x = x = x | x ran card ω x
5 df-rab x ran card | ω x = x | x ran card ω x
6 4 5 eqtr4i x | ω x card x = x = x ran card | ω x
7 f1oeq3 x | ω x card x = x = x ran card | ω x : On 1-1 onto x | ω x card x = x : On 1-1 onto x ran card | ω x
8 6 7 ax-mp : On 1-1 onto x | ω x card x = x : On 1-1 onto x ran card | ω x
9 alephon z On
10 epelg z On y E z y z
11 9 10 mp1i y On z On y E z y z
12 alephord2 y On z On y z y z
13 alephord y On z On y z y z
14 11 12 13 3bitr2d y On z On y E z y z
15 14 bibi2d y On z On y E z y E z y E z y z
16 15 ralbidva y On z On y E z y E z z On y E z y z
17 16 ralbiia y On z On y E z y E z y On z On y E z y z
18 8 17 anbi12i : On 1-1 onto x | ω x card x = x y On z On y E z y E z : On 1-1 onto x ran card | ω x y On z On y E z y z
19 df-isom Isom E , E On x | ω x card x = x : On 1-1 onto x | ω x card x = x y On z On y E z y E z
20 df-isom Isom E , On x ran card | ω x : On 1-1 onto x ran card | ω x y On z On y E z y z
21 18 19 20 3bitr4i Isom E , E On x | ω x card x = x Isom E , On x ran card | ω x
22 1 21 mpbi Isom E , On x ran card | ω x