Metamath Proof Explorer


Theorem alephiso2

Description: aleph is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023)

Ref Expression
Assertion alephiso2 IsomE,Onxrancard|ωx

Proof

Step Hyp Ref Expression
1 alephiso IsomE,EOnx|ωxcardx=x
2 iscard4 cardx=xxrancard
3 2 anbi1ci ωxcardx=xxrancardωx
4 3 abbii x|ωxcardx=x=x|xrancardωx
5 df-rab xrancard|ωx=x|xrancardωx
6 4 5 eqtr4i x|ωxcardx=x=xrancard|ωx
7 f1oeq3 x|ωxcardx=x=xrancard|ωx:On1-1 ontox|ωxcardx=x:On1-1 ontoxrancard|ωx
8 6 7 ax-mp :On1-1 ontox|ωxcardx=x:On1-1 ontoxrancard|ωx
9 alephon zOn
10 epelg zOnyEzyz
11 9 10 mp1i yOnzOnyEzyz
12 alephord2 yOnzOnyzyz
13 alephord yOnzOnyzyz
14 11 12 13 3bitr2d yOnzOnyEzyz
15 14 bibi2d yOnzOnyEzyEzyEzyz
16 15 ralbidva yOnzOnyEzyEzzOnyEzyz
17 16 ralbiia yOnzOnyEzyEzyOnzOnyEzyz
18 8 17 anbi12i :On1-1 ontox|ωxcardx=xyOnzOnyEzyEz:On1-1 ontoxrancard|ωxyOnzOnyEzyz
19 df-isom IsomE,EOnx|ωxcardx=x:On1-1 ontox|ωxcardx=xyOnzOnyEzyEz
20 df-isom IsomE,Onxrancard|ωx:On1-1 ontoxrancard|ωxyOnzOnyEzyz
21 18 19 20 3bitr4i IsomE,EOnx|ωxcardx=xIsomE,Onxrancard|ωx
22 1 21 mpbi IsomE,Onxrancard|ωx