Step |
Hyp |
Ref |
Expression |
1 |
|
alephiso |
|- aleph Isom _E , _E ( On , { x | ( _om C_ x /\ ( card ` x ) = x ) } ) |
2 |
|
iscard4 |
|- ( ( card ` x ) = x <-> x e. ran card ) |
3 |
2
|
anbi1ci |
|- ( ( _om C_ x /\ ( card ` x ) = x ) <-> ( x e. ran card /\ _om C_ x ) ) |
4 |
3
|
abbii |
|- { x | ( _om C_ x /\ ( card ` x ) = x ) } = { x | ( x e. ran card /\ _om C_ x ) } |
5 |
|
df-rab |
|- { x e. ran card | _om C_ x } = { x | ( x e. ran card /\ _om C_ x ) } |
6 |
4 5
|
eqtr4i |
|- { x | ( _om C_ x /\ ( card ` x ) = x ) } = { x e. ran card | _om C_ x } |
7 |
|
f1oeq3 |
|- ( { x | ( _om C_ x /\ ( card ` x ) = x ) } = { x e. ran card | _om C_ x } -> ( aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } <-> aleph : On -1-1-onto-> { x e. ran card | _om C_ x } ) ) |
8 |
6 7
|
ax-mp |
|- ( aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } <-> aleph : On -1-1-onto-> { x e. ran card | _om C_ x } ) |
9 |
|
alephon |
|- ( aleph ` z ) e. On |
10 |
|
epelg |
|- ( ( aleph ` z ) e. On -> ( ( aleph ` y ) _E ( aleph ` z ) <-> ( aleph ` y ) e. ( aleph ` z ) ) ) |
11 |
9 10
|
mp1i |
|- ( ( y e. On /\ z e. On ) -> ( ( aleph ` y ) _E ( aleph ` z ) <-> ( aleph ` y ) e. ( aleph ` z ) ) ) |
12 |
|
alephord2 |
|- ( ( y e. On /\ z e. On ) -> ( y e. z <-> ( aleph ` y ) e. ( aleph ` z ) ) ) |
13 |
|
alephord |
|- ( ( y e. On /\ z e. On ) -> ( y e. z <-> ( aleph ` y ) ~< ( aleph ` z ) ) ) |
14 |
11 12 13
|
3bitr2d |
|- ( ( y e. On /\ z e. On ) -> ( ( aleph ` y ) _E ( aleph ` z ) <-> ( aleph ` y ) ~< ( aleph ` z ) ) ) |
15 |
14
|
bibi2d |
|- ( ( y e. On /\ z e. On ) -> ( ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) <-> ( y _E z <-> ( aleph ` y ) ~< ( aleph ` z ) ) ) ) |
16 |
15
|
ralbidva |
|- ( y e. On -> ( A. z e. On ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) <-> A. z e. On ( y _E z <-> ( aleph ` y ) ~< ( aleph ` z ) ) ) ) |
17 |
16
|
ralbiia |
|- ( A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) <-> A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) ~< ( aleph ` z ) ) ) |
18 |
8 17
|
anbi12i |
|- ( ( aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } /\ A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) ) <-> ( aleph : On -1-1-onto-> { x e. ran card | _om C_ x } /\ A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) ~< ( aleph ` z ) ) ) ) |
19 |
|
df-isom |
|- ( aleph Isom _E , _E ( On , { x | ( _om C_ x /\ ( card ` x ) = x ) } ) <-> ( aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } /\ A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) ) ) |
20 |
|
df-isom |
|- ( aleph Isom _E , ~< ( On , { x e. ran card | _om C_ x } ) <-> ( aleph : On -1-1-onto-> { x e. ran card | _om C_ x } /\ A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) ~< ( aleph ` z ) ) ) ) |
21 |
18 19 20
|
3bitr4i |
|- ( aleph Isom _E , _E ( On , { x | ( _om C_ x /\ ( card ` x ) = x ) } ) <-> aleph Isom _E , ~< ( On , { x e. ran card | _om C_ x } ) ) |
22 |
1 21
|
mpbi |
|- aleph Isom _E , ~< ( On , { x e. ran card | _om C_ x } ) |