Step |
Hyp |
Ref |
Expression |
1 |
|
alephiso2 |
|- aleph Isom _E , ~< ( On , { x e. ran card | _om C_ x } ) |
2 |
|
omelon |
|- _om e. On |
3 |
|
elrncard |
|- ( x e. ran card <-> ( x e. On /\ A. y e. x -. y ~~ x ) ) |
4 |
3
|
simplbi |
|- ( x e. ran card -> x e. On ) |
5 |
|
ontri1 |
|- ( ( _om e. On /\ x e. On ) -> ( _om C_ x <-> -. x e. _om ) ) |
6 |
2 4 5
|
sylancr |
|- ( x e. ran card -> ( _om C_ x <-> -. x e. _om ) ) |
7 |
6
|
rabbiia |
|- { x e. ran card | _om C_ x } = { x e. ran card | -. x e. _om } |
8 |
|
dfdif2 |
|- ( ran card \ _om ) = { x e. ran card | -. x e. _om } |
9 |
7 8
|
eqtr4i |
|- { x e. ran card | _om C_ x } = ( ran card \ _om ) |
10 |
|
isoeq5 |
|- ( { x e. ran card | _om C_ x } = ( ran card \ _om ) -> ( aleph Isom _E , ~< ( On , { x e. ran card | _om C_ x } ) <-> aleph Isom _E , ~< ( On , ( ran card \ _om ) ) ) ) |
11 |
9 10
|
ax-mp |
|- ( aleph Isom _E , ~< ( On , { x e. ran card | _om C_ x } ) <-> aleph Isom _E , ~< ( On , ( ran card \ _om ) ) ) |
12 |
1 11
|
mpbi |
|- aleph Isom _E , ~< ( On , ( ran card \ _om ) ) |