| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephiso2 |
⊢ ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) |
| 2 |
|
omelon |
⊢ ω ∈ On |
| 3 |
|
elrncard |
⊢ ( 𝑥 ∈ ran card ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥 ) ) |
| 4 |
3
|
simplbi |
⊢ ( 𝑥 ∈ ran card → 𝑥 ∈ On ) |
| 5 |
|
ontri1 |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω ) ) |
| 6 |
2 4 5
|
sylancr |
⊢ ( 𝑥 ∈ ran card → ( ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω ) ) |
| 7 |
6
|
rabbiia |
⊢ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } = { 𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω } |
| 8 |
|
dfdif2 |
⊢ ( ran card ∖ ω ) = { 𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω } |
| 9 |
7 8
|
eqtr4i |
⊢ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } = ( ran card ∖ ω ) |
| 10 |
|
isoeq5 |
⊢ ( { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } = ( ran card ∖ ω ) → ( ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) ↔ ℵ Isom E , ≺ ( On , ( ran card ∖ ω ) ) ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) ↔ ℵ Isom E , ≺ ( On , ( ran card ∖ ω ) ) ) |
| 12 |
1 11
|
mpbi |
⊢ ℵ Isom E , ≺ ( On , ( ran card ∖ ω ) ) |