Metamath Proof Explorer


Theorem alephiso2

Description: aleph is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023)

Ref Expression
Assertion alephiso2 ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } )

Proof

Step Hyp Ref Expression
1 alephiso ℵ Isom E , E ( On , { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } )
2 iscard4 ( ( card ‘ 𝑥 ) = 𝑥𝑥 ∈ ran card )
3 2 anbi1ci ( ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑥 ∈ ran card ∧ ω ⊆ 𝑥 ) )
4 3 abbii { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ran card ∧ ω ⊆ 𝑥 ) }
5 df-rab { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ran card ∧ ω ⊆ 𝑥 ) }
6 4 5 eqtr4i { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } = { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 }
7 f1oeq3 ( { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } = { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } → ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ↔ ℵ : On –1-1-onto→ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) )
8 6 7 ax-mp ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ↔ ℵ : On –1-1-onto→ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } )
9 alephon ( ℵ ‘ 𝑧 ) ∈ On
10 epelg ( ( ℵ ‘ 𝑧 ) ∈ On → ( ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑧 ) ) )
11 9 10 mp1i ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑧 ) ) )
12 alephord2 ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑦𝑧 ↔ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑧 ) ) )
13 alephord ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑦𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) )
14 11 12 13 3bitr2d ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) )
15 14 bibi2d ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ↔ ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) )
16 15 ralbidva ( 𝑦 ∈ On → ( ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) )
17 16 ralbiia ( ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) )
18 8 17 anbi12i ( ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ) ↔ ( ℵ : On –1-1-onto→ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) )
19 df-isom ( ℵ Isom E , E ( On , { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) ↔ ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ) )
20 df-isom ( ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) ↔ ( ℵ : On –1-1-onto→ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) )
21 18 19 20 3bitr4i ( ℵ Isom E , E ( On , { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) ↔ ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) )
22 1 21 mpbi ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } )