Step |
Hyp |
Ref |
Expression |
1 |
|
alephiso |
⊢ ℵ Isom E , E ( On , { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) |
2 |
|
iscard4 |
⊢ ( ( card ‘ 𝑥 ) = 𝑥 ↔ 𝑥 ∈ ran card ) |
3 |
2
|
anbi1ci |
⊢ ( ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑥 ∈ ran card ∧ ω ⊆ 𝑥 ) ) |
4 |
3
|
abbii |
⊢ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ran card ∧ ω ⊆ 𝑥 ) } |
5 |
|
df-rab |
⊢ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ran card ∧ ω ⊆ 𝑥 ) } |
6 |
4 5
|
eqtr4i |
⊢ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } = { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } |
7 |
|
f1oeq3 |
⊢ ( { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } = { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } → ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ↔ ℵ : On –1-1-onto→ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) ) |
8 |
6 7
|
ax-mp |
⊢ ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ↔ ℵ : On –1-1-onto→ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) |
9 |
|
alephon |
⊢ ( ℵ ‘ 𝑧 ) ∈ On |
10 |
|
epelg |
⊢ ( ( ℵ ‘ 𝑧 ) ∈ On → ( ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑧 ) ) ) |
11 |
9 10
|
mp1i |
⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑧 ) ) ) |
12 |
|
alephord2 |
⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑦 ∈ 𝑧 ↔ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑧 ) ) ) |
13 |
|
alephord |
⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑦 ∈ 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) |
14 |
11 12 13
|
3bitr2d |
⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) |
15 |
14
|
bibi2d |
⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ↔ ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) ) |
16 |
15
|
ralbidva |
⊢ ( 𝑦 ∈ On → ( ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) ) |
17 |
16
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) |
18 |
8 17
|
anbi12i |
⊢ ( ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ) ↔ ( ℵ : On –1-1-onto→ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) ) |
19 |
|
df-isom |
⊢ ( ℵ Isom E , E ( On , { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) ↔ ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ) ) |
20 |
|
df-isom |
⊢ ( ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) ↔ ( ℵ : On –1-1-onto→ { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝑧 ) ) ) ) |
21 |
18 19 20
|
3bitr4i |
⊢ ( ℵ Isom E , E ( On , { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) ↔ ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) ) |
22 |
1 21
|
mpbi |
⊢ ℵ Isom E , ≺ ( On , { 𝑥 ∈ ran card ∣ ω ⊆ 𝑥 } ) |