Metamath Proof Explorer


Theorem aleph1min

Description: ( aleph1o ) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023)

Ref Expression
Assertion aleph1min ( ℵ ‘ 1o ) = { 𝑥 ∈ On ∣ ω ≺ 𝑥 }

Proof

Step Hyp Ref Expression
1 df-1o 1o = suc ∅
2 1 fveq2i ( ℵ ‘ 1o ) = ( ℵ ‘ suc ∅ )
3 0elon ∅ ∈ On
4 alephsuc ( ∅ ∈ On → ( ℵ ‘ suc ∅ ) = ( har ‘ ( ℵ ‘ ∅ ) ) )
5 3 4 ax-mp ( ℵ ‘ suc ∅ ) = ( har ‘ ( ℵ ‘ ∅ ) )
6 aleph0 ( ℵ ‘ ∅ ) = ω
7 6 fveq2i ( har ‘ ( ℵ ‘ ∅ ) ) = ( har ‘ ω )
8 5 7 eqtri ( ℵ ‘ suc ∅ ) = ( har ‘ ω )
9 omelon ω ∈ On
10 onenon ( ω ∈ On → ω ∈ dom card )
11 9 10 ax-mp ω ∈ dom card
12 harval2 ( ω ∈ dom card → ( har ‘ ω ) = { 𝑥 ∈ On ∣ ω ≺ 𝑥 } )
13 11 12 ax-mp ( har ‘ ω ) = { 𝑥 ∈ On ∣ ω ≺ 𝑥 }
14 8 13 eqtri ( ℵ ‘ suc ∅ ) = { 𝑥 ∈ On ∣ ω ≺ 𝑥 }
15 2 14 eqtri ( ℵ ‘ 1o ) = { 𝑥 ∈ On ∣ ω ≺ 𝑥 }