Step |
Hyp |
Ref |
Expression |
1 |
|
df-1o |
⊢ 1o = suc ∅ |
2 |
1
|
fveq2i |
⊢ ( ℵ ‘ 1o ) = ( ℵ ‘ suc ∅ ) |
3 |
|
0elon |
⊢ ∅ ∈ On |
4 |
|
alephsuc |
⊢ ( ∅ ∈ On → ( ℵ ‘ suc ∅ ) = ( har ‘ ( ℵ ‘ ∅ ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ℵ ‘ suc ∅ ) = ( har ‘ ( ℵ ‘ ∅ ) ) |
6 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
7 |
6
|
fveq2i |
⊢ ( har ‘ ( ℵ ‘ ∅ ) ) = ( har ‘ ω ) |
8 |
5 7
|
eqtri |
⊢ ( ℵ ‘ suc ∅ ) = ( har ‘ ω ) |
9 |
|
omelon |
⊢ ω ∈ On |
10 |
|
onenon |
⊢ ( ω ∈ On → ω ∈ dom card ) |
11 |
9 10
|
ax-mp |
⊢ ω ∈ dom card |
12 |
|
harval2 |
⊢ ( ω ∈ dom card → ( har ‘ ω ) = ∩ { 𝑥 ∈ On ∣ ω ≺ 𝑥 } ) |
13 |
11 12
|
ax-mp |
⊢ ( har ‘ ω ) = ∩ { 𝑥 ∈ On ∣ ω ≺ 𝑥 } |
14 |
8 13
|
eqtri |
⊢ ( ℵ ‘ suc ∅ ) = ∩ { 𝑥 ∈ On ∣ ω ≺ 𝑥 } |
15 |
2 14
|
eqtri |
⊢ ( ℵ ‘ 1o ) = ∩ { 𝑥 ∈ On ∣ ω ≺ 𝑥 } |