Metamath Proof Explorer


Theorem pren2d

Description: A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023)

Ref Expression
Hypotheses pren2d.a φ A V
pren2d.b φ B W
pren2d.aneb φ A B
Assertion pren2d φ A B 2 𝑜

Proof

Step Hyp Ref Expression
1 pren2d.a φ A V
2 pren2d.b φ B W
3 pren2d.aneb φ A B
4 1 elexd φ A V
5 2 elexd φ B V
6 pren2 A B 2 𝑜 A V B V A B
7 4 5 3 6 syl3anbrc φ A B 2 𝑜