Metamath Proof Explorer
Description: A pair of two distinct sets is equinumerous to ordinal two.
(Contributed by RP, 21-Oct-2023)
|
|
Ref |
Expression |
|
Hypotheses |
sur0020.a |
|
|
|
sur0020.b |
|
|
|
sur0020.aneb |
|
|
Assertion |
pren2d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sur0020.a |
|
2 |
|
sur0020.b |
|
3 |
|
sur0020.aneb |
|
4 |
1
|
elexd |
|
5 |
2
|
elexd |
|
6 |
|
pren2 |
|
7 |
4 5 3 6
|
syl3anbrc |
|