Metamath Proof Explorer


Theorem pr2eldif2

Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)

Ref Expression
Assertion pr2eldif2
|- ( { A , B } ~~ 2o -> B e. ( { A , B } \ { A } ) )

Proof

Step Hyp Ref Expression
1 pren2
 |-  ( { A , B } ~~ 2o <-> ( A e. _V /\ B e. _V /\ A =/= B ) )
2 prid2g
 |-  ( B e. _V -> B e. { A , B } )
3 2 3ad2ant2
 |-  ( ( A e. _V /\ B e. _V /\ A =/= B ) -> B e. { A , B } )
4 necom
 |-  ( A =/= B <-> B =/= A )
5 nelsn
 |-  ( B =/= A -> -. B e. { A } )
6 4 5 sylbi
 |-  ( A =/= B -> -. B e. { A } )
7 6 3ad2ant3
 |-  ( ( A e. _V /\ B e. _V /\ A =/= B ) -> -. B e. { A } )
8 3 7 eldifd
 |-  ( ( A e. _V /\ B e. _V /\ A =/= B ) -> B e. ( { A , B } \ { A } ) )
9 1 8 sylbi
 |-  ( { A , B } ~~ 2o -> B e. ( { A , B } \ { A } ) )