Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pr2eldif2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pren2 | ||
| 2 | prid2g | ||
| 3 | 2 | 3ad2ant2 | |
| 4 | necom | ||
| 5 | nelsn | ||
| 6 | 4 5 | sylbi | |
| 7 | 6 | 3ad2ant3 | |
| 8 | 3 7 | eldifd | |
| 9 | 1 8 | sylbi |